METHOD: The method applied here to measure the invitro plasma oxidizability, accounts a convenient way that can be well suited in any clinical laboratory settings. Un-fractionated plasma was exposed to CuSO4 (5.0 mmol/L), a pro-oxidant, and low frequency ultrasonic wave to induce oxidation, and finally oxidizability was calculated by TBARS and Conjugated Diene methods.
RESULT: In our study, plasma LDL greater than 150 mg/dL possess 1.75 times more risk to undergo oxidation (CI, 0.7774 to 3.94; p = 0.071) than the low LDL plasma, percent of oxidation increased from 38.3% to 67.1% for the LDL level upto 150 mg/dL and high. Lag phase, which is considered as the plasma antioxidative protection, was also influenced by the higher LDL concentration. The mean lag time was 65.27 ± 20.02 (p = 0.02 compared to healthy), where as for 94.71 ± 35.11 min for the normolipidemic subject. The plasma oxidizability was also changed drastically for total cholesterol level, oxidative susceptibility shown 35% and 55.02% for 200 mg/dL and high respectively, however it didn't appear as risk factor. Patient samples were also stratified according to their age, gender, and blood glucose level. Older persons (≥40 years) were 1.096 times (95% CL, 0.5607 to 2.141, p = 0.396) than younger (≤39 years age), males are 1.071 (95% CI, 0.5072- 2.264) times than the females, and diabetic patients are 1.091 (CI, 0.6153 to 1.934, p = 0.391) times in more risk than the non-diabetic counterpart.
CONCLUSION: This method addressing its easy applicability in biomedical research. And by this we were able to show that patients with high LDL (≥150 mg/dL) are in alarming condition besides diabetic and elderly (≥40 years age) males are considered to be susceptible and more prone to develop vascular diseases.