We analyse molecular and phenotypic evolution in a group of taxonomically problematic Indomalayan pitvipers, the Trimeresurus sumatranus group. Mitochondrial DNA sequencing provides a well-resolved phylogeny, with each species representing a distinct lineage. Multivariate morphological analysis reveals a high level of phenotypic differentiation, which is congruent between the sexes but does not reflect phylogenetic history. An adaptive explanation for the observed pattern of differentiation is supported by independent contrasts analysis, which shows significant correlations between current ecology and the characters that most account for the variation between taxa, including those that are presently used to identify the species. Reduced precipitation and altitude, and increased temperature, are correlated with higher numbers of scales on the head, body and tail. It is hypothesized that scale number plays an important role in heat and water exchange by influencing the area of exposed of interstitial skin, and that colour pattern variation reflects selection pressures involving camouflage and thermoregulation. Ecological convergence in traits used for classification is found to have important implications for species identification where taxa are distributed over varying environments.
The Malayan pit viper (Calloselasma rhodostoma) is of major clinical significance both as a leading cause of snakebite and as the source of ancrod (Arvin). Although its venom has been extensively studied, the degree to which venom composition varies between individuals is poorly known. We individually analysed the venoms of over 100 C. rhodostoma using isoelectric focusing. In all populations, females produced an intense band that was absent from all males, and significant ontogenetic variation was detected. Principal components analysis of the banding profiles also revealed strong geographic variation, which was significantly congruent with variation in the biological activities of the venom (phosphodiesterase, alkalinephosphoesterase, L-amino acid oxidase, arginine ester hydrolase, 5'-nucleotidase, thrombin-like enzyme, haemorrhagic activity). Studies of captive-bred snakes indicate that the intraspecific variation in venom is genetically inherited rather than environmentally induced. The intraspecific variation in venom composition and biological activity could be of applied importance to snakebite therapy, both in correct diagnosis of the source of envenomation and in the development of a more effective antivenom. Greater attention should be given to the source of C. rhodostoma venom used in research to ensure reproducibility of results.
The World Health Organization (WHO) issued guidelines for the regulatory evaluation of biosimilars in 2009 and has provided considerable effort toward helping member states implement the evaluation principles in the guidelines into their regulatory practices. Despite this effort, a recent WHO survey (conducted in 2019-2020) has revealed four main remaining challenges: unavailable/insufficient reference products in the country; lack of resources; problems with the quality of some biosimilars (and even more with noninnovator products); and difficulties with the practice of interchangeability and naming of biosimilars. The following have been identified as opportunities/solutions for regulatory authorities to deal with the existing challenges: (1) exchange of information on products with other regulatory authorities and accepting foreign licensed and sourced reference products, hence avoiding conducting unnecessary (duplicate) bridging studies; (2) use of a "reliance" concept and/or joint review for the assessment and approval of biosimilars; (3) review and reassessment of the products already approved before the establishment of a regulatory framework for biosimilar approval; and (4) setting appropriate regulatory oversight for good pharmacovigilance, which is essential for the identification of problems with products and establishing the safety and efficacy of interchangeability of biosimilars.