Displaying all 2 publications

Abstract:
Sort:
  1. Azad SM, Jin Y, Ser HL, Goh BH, Lee LH, Thawai C, et al.
    J Appl Microbiol, 2022 Feb;132(2):772-784.
    PMID: 34260807 DOI: 10.1111/jam.15222
    Extensively produced by members of the genus Streptomyces, piericidins are a large family of microbial metabolites, which consist of main skeleton of 4-pyridinol with methylated polyketide side chain. Nonetheless, these metabolites show differences in their bioactive potentials against micro-organisms, insects and tumour cells. Due to its close structural similarity with coenzyme Q, piericidins also possess an inhibitory activity against NADH dehydrogenase as well as Photosystem II. This review studied the latest research progress of piericidins, covering the chemical structure and physical properties of newly identified members, bioactivities, biosynthetic pathway with gene clusters and future prospect. With the increasing incidence of drug-resistant human pathogen strains and cancers, this review aimed to provide clues for the development of either new potential antibiotics or anti-tumour agents.
  2. Cui Y, Song K, Jin ZJ, Lee LH, Thawai C, He YW
    Synth Syst Biotechnol, 2023 Dec;8(4):618-628.
    PMID: 37823038 DOI: 10.1016/j.synbio.2023.09.004
    Biocontrol strain Pseudomonas PA1201 produces pyoluteorin (Plt), which is an antimicrobial secondary metabolite. Plt represents a promising candidate pesticide due to its broad-spectrum antifungal and antibacterial activity. Although PA1201 contains a complete genetic cluster for Plt biosynthesis, it fails to produce detectable level of Plt when grown in media typically used for Pseudomonas strains. In this study, minimum medium (MM) was found to favor Plt biosynthesis. Using the medium M, which contains all the salts of MM medium except for mannitol, as a basal medium, we compared 10 carbon sources for their ability to promote Plt biosynthesis. Fructose, mannitol, and glycerol promoted Plt biosynthesis, with fructose being the most effective carbon source. Glucose or succinic acid had no significant effect on Plt biosynthesis, but effectively antagonized fructose-dependent synthesis of Plt. Promoter-lacZ fusion reporter strains demonstrated that fructose acted through activation of the pltLABCDEFG (pltL) operon but had no effect on other genes of plt gene cluster; glucose or succinic acid antagonized fructose-dependent pltL induction. Mechanistically, fructose-mediated Plt synthesis involved carbon catabolism repression. The two-component system CbrA/CbrB and small RNA catabolite repression control Z (crcZ) were essential for fructose-induced Plt synthesis. The small RNA binding protein Hfq and Crc negatively regulated fructose-induced Plt. Taken together, this study provides a new model of fructose-dependent Plt production in PA1201 that can help improve Plt yield by biosynthetic approaches.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links