A study was conducted to investigate the effects of feeding medium chain triacylglycerol (MCT) on growth performance, plasma fatty acids, villus height and crypt depth in preweaning piglets. A total of 150 new born piglets were randomly assigned into one of three treatments: i) Control (no MCT); ii) MCT with milk (MCT+milk); iii) MCT without milk (MCT+fasting). Body weight, plasma fatty acid profiles, villus height and crypt depth were measured. Final BW for the Control and MCT+fasting was lower (p<0.05) than MCT+milk. The piglets fed with MCT regardless of milk provision or fasting had greater medium chain fatty acids (MCFA) than the Control. In contrast, the Control had greater long chain fatty acid (LCFA) and unsaturated fatty acid (USFA) than the MCT piglets. The piglets fed with MCT regardless of milk provision or fasting had higher villus height for the duodenum and jejunum after 6 h of feeding. Similar observations were found in piglets fed with MCT after 6 and 8 days of treatment. This study showed that feeding MCT to the piglets before weaning improved growth performance, with a greater concentration of MCT in blood plasma as energy source and a greater height of villus in duodenum, jejunum and ileum.
1. Four combinations of metabolites produced from strains of Lactobacillus plantarum were used to study the performance of broiler chickens. 2. A total of 432 male Ross broilers were raised from one-day-old to 42 d of age in deep litter pens (12 birds/pen). These birds were divided into 6 groups and fed on different diets: (i) standard maize-soybean-based diet (negative control); (ii) standard maize-soybean-based diet + Neomycin and Oxytetracycline (positive control); (iii) standard maize-soybean-based diet + 0.3% metabolite combination of Lactobacillus plantarum RS5, RI11, RG14 and RG11 strains (com3456); (iv) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RI11 and RG11 (Com246); (v) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RG14 and RG11 (Com256) and (vi) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RS5, RG14 and RG11 (Com2356). 3. Higher final body weight, weight gain, average daily gain and lower feed conversion ratio were found in all 4 treated groups. 4. The addition of a metabolite combination supplementation also increased faecal lactic acid bacteria population, small intestine villus height and faecal volatile fatty acids and faecal Enterobacteriaceae population.
The effects of feeding different dosages of metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456) on the performance of broiler chickens was studied. A total of 504 male Ross broilers were grouped into 7 treatments and offered different diets: (i) standard corn-soybean based diet (negative control); (ii) standard corn-soybean based diet +100 ppm neomycin and oxytetracycline (positive control); (iii) standard corn-soybean based diet + 0.1% metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456); (iv) standard corn-soybean based diet + 0.2% of Com3456; (v) standard corn-soybean based diet + 0.3% of Com3456 (vi) standard corn-soybean based diet + 0.4% of Com3456 and (vii) standard corn-soybean based diet + 0.5% of Com3456. Supplementation of Com3456 with different dosages improved growth performance, reduced Enterobacteriaceae and increased lactic acid bacteria count, and increased villi height of small intestine and fecal volatile fatty acid concentration. Treatment with 0.4% and 0.2% Com3456 had the best results, especially in terms of growth performance, feed conversion ratio and villi height among other dosages. However, the dosage of 0.2% was recommended due to its lower concentration yielding a similar effect as 0.4% supplementation. These results indicate that 0.2% is an optimum level to be included in the diets of broiler in order to replace antibiotic growth promoters.