Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Tan LL, Chai SP, Mohamed AR
    ChemSusChem, 2012 Oct;5(10):1868-82.
    PMID: 22987439 DOI: 10.1002/cssc.201200480
    Graphene is one of the most promising materials in the field of nanotechnology and has attracted a tremendous amount of research interest in recent years. Due to its large specific surface area, high thermal conductivity, and superior electron mobility, graphene is regarded as an extremely attractive component for the preparation of composite materials. At the same time, the use of photocatalysts, particularly TiO(2), has also been widely studied for their potential in addressing various energy and environmental-related issues. However, bare TiO(2) suffers from low efficiency and a narrow light-response range. Therefore, the combination of graphene and TiO(2) is currently one of the most active interdisciplinary research areas and demonstrations of photocatalytic enhancement are abundant. This Review presents and discusses the current development of graphene-based TiO(2) photocatalysts. The theoretical framework of the composite, the synthetic strategies for the preparation and modification of graphene-based TiO(2) photocatalysts, and applications of the composite are reviewed, with particular attention on the photodegradation of pollutants and photocatalytic water splitting for hydrogen generation.
  2. Tan LL, Musa A, Lee YH
    Sensors (Basel), 2011;11(10):9344-60.
    PMID: 22163699 DOI: 10.3390/s111009344
    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH(4)(+)) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH(4)(+) ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH(4)(+) was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH(4)(+) ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH(4)(+) ion concentrations between 10-100 mM, with a detection limit of 0.18 mM NH(4)(+) ion. The reproducibility of the amperometrical NH(4)(+) biosensor yielded low relative standard deviations between 1.4-4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH(4)(+) ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH(4)(+) obtained from the biosensor and the Nessler spectrophotometric method.
  3. Tan LL, Ahmad K, Kareem BA, Harwant S
    Med J Malaysia, 2001 Jun;56 Suppl C:52-6.
    PMID: 11814250 MyJurnal
    An epidemiological study of 101 consecutive musculoskeletal sarcomas seen at the Institute of Radiotherapy and Oncology between 1995 and 1999 inclusive was carried out. The commonest sarcomas seen were osteosarcoma, rhabdomyosarcoma, Ewing's Sarcoma, liposarcoma, leimyosarcoma, malignant fibrous histiocytoma and chondrosarcoma; which collectively accounted for 84.2% of the group. Thirty patients (29.7%) presented with metastases. The commonest site of occurrence was lower extremity with 47.5%, followed by 34.7% in the trunk and peritoneum/axial skeleton, 9.9% in the head and neck region; and 7.90 in the upper extremity. We found no apparent relationship between race and incidence osteosarcoma and Ewing's sarcoma, as was reported by previous workers.
  4. Hassan RA, Heng LY, Tan LL
    Sensors (Basel), 2020 Sep 04;20(18).
    PMID: 32899886 DOI: 10.3390/s20185043
    Carrageenans are linear sulphated polysaccharides that are commonly added into confectionery products but may exert a detrimental effect to human health. A new and simpler way of carrageenan determination based on an optical sensor utilizing a methylcellulose/poly(n-butyl acrylate) (Mc/PnBA) composite membrane with immobilized methylene blue (MB) was developed. The hydrophilic Mc polymer membrane was successfully modified with a more hydrophobic acrylic polymer. This was to produce an insoluble membrane at room temperature where MB reagent could be immobilized to build an optical sensor for carrageenan analysis. The fluorescence intensity of MB in the composite membrane was found to be proportional to the carrageenan concentrations in a linear manner (1.0-20.0 mg L-1, R2 = 0.992) and with a detection limit at 0.4 mg L-1. Recovery of spiked carrageenan into commercial fruit juice products showed percentage recoveries between 90% and 102%. The optical sensor has the advantages of improved sensitivity and better selectivity to carrageenan when compared to other types of hydrocolloids. Its sensitivity was comparable to most sophisticated techniques for carageenan analysis but better than other types of optical sensors. Thus, this sensor provides a simple, rapid, and sensitive means for carageenan analysis.
  5. Hassan RA, Heng LY, Tan LL
    Sci Rep, 2019 04 23;9(1):6379.
    PMID: 31015498 DOI: 10.1038/s41598-019-42757-y
    A novel disposable electrochemical biosensor based on immobilized calf thymus double-stranded DNA (dsDNA) on the carbon-based screen-printed electrode (SPE) is developed for rapid biorecognition of carrageenan by using methylene blue (MB) redox indicator. The biosensor protocol for the detection of carrageenan is based on the concept of competitive binding of positively charged MB to the negatively charged dsDNA and carrageenan. The decrement in the MB cathodic peak current (ipc) signal as a result of the released MB from the immobilized dsDNA, and attracted to the carrageenan can be monitored via differential pulse voltammetry (DPV). The biosensor showed high sensitivity and selectivity to carrageenan at low concentration without interference from other polyanions such as alginate, gum arabic and starch. Calibration of the biosensor with carrageenan exhibited an excellent linear dependence from 1-10 mg L-1 (R2 = 0.98) with a detection limit of 0.08 mg L-1. The DNA-based carrageenan biosensor showed satisfactory reproducibility with 5.6-6.9% (n = 3) relative standard deviations (RSD), and possessing several advantages such as simplicity, fast and direct application to real sample analysis without any prior extensive sample treatments, particularly for seaweeds and food analyses.
  6. Lee J, Tan LL, Chai SP
    Nanoscale, 2021 Apr 21;13(15):7011-7033.
    PMID: 33889914 DOI: 10.1039/d1nr00783a
    As an indispensable energy source, ammonia plays an essential role in agriculture and various industries. Given that the current ammonia production is still dominated by the energy-intensive and high carbon footprint Haber-Bosch process, photocatalytic nitrogen fixation represents a low-energy consuming and sustainable approach to generate ammonia. Heterostructured photocatalysts are hybrid materials composed of semiconductor materials containing interfaces that make full use of the unique superiorities of the constituents and synergistic effects between them. These promising photocatalysts have superior performances and substantial potential in photocatalytic reduction of nitrogen. In this review, a wide spectrum of recently developed heterostructured photocatalysts for nitrogen fixation to ammonia are evaluated. The fundamentals of solar-to-ammonia conversion, basic principles of various heterojunction photocatalysts and modification strategies are systematically reviewed. Finally, a brief summary and perspectives on the ongoing challenges and directions for future development of nitrogen photofixation catalysts are also provided.
  7. Nurlely, Ahmad M, Heng LY, Tan LL
    Spectrochim Acta A Mol Biomol Spectrosc, 2022 Feb 15;267(Pt 2):120535.
    PMID: 34749257 DOI: 10.1016/j.saa.2021.120535
    Optical biosensor for the detection of formaldehyde has been developed based on the transparent enzymatic stacked membranes system on the glass substrate, and employing optical absorption transducer with H+ ion-selective Nile Blue chromoionophore (NBCM) dye-doped methacrylic acrylic (MB28) copolymer membrane as the optode membrane. Alcohol oxidase (AOx) enzymes were entrapped within the biocompatible sol-gel matrix and deposited on top of the pH optode membrane. As the uppermost catalytic membrane catalyzes the oxidative conversion of formaldehyde to formic acid and hydrogen peroxide, the immobilized NBCM undergoes protonation reaction and forms HNBCM+, the dark blue ion-chromoionophore complex via H+ ion transfer reaction within the soft and flexible MB28 polymeric membrane. This rendered the enzymatic optode membrane absorbed a high yellow light intensity from the light source and exhibited maximum absorption peaks at 610 and 660 nm. Optical evaluation of formaldehyde by means on UV-vis absorption transduction of the enzymatic stacked membranes demonstrated rapid response time of 10 min with high sensitivity, good linearity and high reproducibility across a wide formaldehyde concentration range of 1 × 10-3-1 × 103 mM (R2 = 0.9913), and limit of detection (LOD) at 1 × 10-3 mM, which could be useful for formaldehyde assay in industrial, agricultural, environmental, food and beverages as well as medical samples. The formaldehyde concentration in snapper fish, pomfret fish and threadfin fish samples determined by the proposed optical enzymatic biosensor were very much close to the formaldehyde concentration values determined by the UV-vis spectrophotometric NASH standard method based on the statistical t-test. This suggests that the optical biosensor can be used as a reliable method for quantitative determination of formaldehyde levels in food samples.
  8. Tan LL, Lau TY, Timothy W, Prabakaran D
    ScientificWorldJournal, 2014;2014:935846.
    PMID: 25574497 DOI: 10.1155/2014/935846
    Chloroquine resistance (CQR) in falciparum malaria was identified to be associated with several mutations in the chloroquine resistance transporter gene (pfcrt) that encodes the transmembrane transporter in digestive vacuole membrane of the parasite. This study aimed to investigate the point mutations across the full-length pfcrt in Plasmodium falciparum isolates in Sabah, Malaysia. A total of 31 P. falciparum positive samples collected from Keningau, Kota Kinabalu, and Kudat, Sabah, were analyzed. pfcrt was PCR amplified and cloned prior to sequence analysis. This study showed that all the previously described 10 point mutations associated with CQR at codons 72, 74, 75, 76, 97, 220, 271, 326, 356, and 371 were found with different prevalence. Besides, two novel point mutations, I166V and H273N, were identified with 22.5% and 19.3%, respectively. Three haplotypes, namely, CVMNK (29%), CVIET (3.2%), and SVMNT (67.7%), were identified. High prevalence of SVMNT among P. falciparum isolates from Sabah showed that these isolates are closer to the P. falciparum isolates from Papua New Guinea rather than to the more proximal Southeast Asian CVIET haplotype. Full-length analysis of pfcrt showed that chloroquine resistant P. falciparum in Sabah is still prevalent despite the withdrawal of chloroquine usage since 1979.
  9. Ong WJ, Tan LL, Chai SP, Yong ST
    Dalton Trans, 2015 Jan 21;44(3):1249-57.
    PMID: 25415620 DOI: 10.1039/c4dt02940b
    In this paper, noble-metal Pt nanoparticles of around 2.5 nm were deposited on graphitic carbon nitride (g-C3N4) synthesized by a chemical reduction process in ethylene glycol. Compared with pure g-C3N4, the resulting Pt-loaded g-C3N4 (Pt/CN) exhibited a considerable improvement in the photoreduction of CO2 to CH4 in the presence of water vapor at ambient temperature and atmospheric pressure under visible light irradiation. 2 wt% Pt-loaded g-C3N4 (2Pt/CN) nanocomposites produced the highest CH4 yield of 13.02 μmol gcatalyst(-1) after 10 h of light irradiation, which was a 5.1-fold enhancement in comparison with pure g-C3N4 (2.55 μmol gcatalyst(-1)). The remarkable photocatalytic activity of Pt/CN nanostructures in the CH4 production was ascribed to the enhanced visible light absorption and efficient interfacial transfer of photogenerated electrons from g-C3N4 to Pt due to the lower Fermi level of Pt in the Pt/CN hybrid heterojunctions as evidenced by the UV-Vis and photoluminescence studies. The enriched electron density on Pt favored the reduction of CO2 to CH4via a multi-electron transfer process. This resulted in the inhibition of electron-hole pair recombination for effective spatial charge separation, thus enhancing the photocatalytic reactions. Based on the experimental results obtained, a plausible mechanism for improved photocatalytic performance associated with Pt/CN was proposed.
  10. Ong WJ, Tan LL, Chai SP, Yong ST
    Chem Commun (Camb), 2015 Jan 18;51(5):858-61.
    PMID: 25429376 DOI: 10.1039/c4cc08996k
    A facile one-pot impregnation-thermal reduction strategy was employed to fabricate sandwich-like graphene-g-C3N4 (GCN) nanocomposites using urea and graphene oxide as precursors. The GCN sample exhibited a slight red shift of the absorption band edge attributed to the formation of a C-O-C bond as a covalent cross linker between graphene and g-C3N4. The GCN sample demonstrated high visible-light photoactivity towards CO2 reduction under ambient conditions, exhibiting a 2.3-fold enhancement over pure g-C3N4. This was ascribed to the inhibition of electron-hole pair recombination by graphene, which increased the charge transfer.
  11. Tan LL, Ong WJ, Chai SP, Mohamed AR
    Chem Commun (Camb), 2014 Jul 4;50(52):6923-6.
    PMID: 24841282 DOI: 10.1039/c4cc01304b
    A facile and dopant-free strategy was employed to fabricate oxygen-rich TiO2 (O2-TiO2) with enhanced visible light photoactivity. Such properties were achieved by the in situ generation of oxygen through the thermal decomposition of the peroxo-titania complex. The O2-TiO2 photocatalyst exhibited high photoactivity towards CO2 reduction under visible light.
  12. Tan LL, Ong WJ, Chai SP, Mohamed AR
    Nanoscale Res Lett, 2013;8(1):465.
    PMID: 24195721 DOI: 10.1186/1556-276X-8-465
    Photocatalytic reduction of carbon dioxide (CO2) into hydrocarbon fuels such as methane is an attractive strategy for simultaneously harvesting solar energy and capturing this major greenhouse gas. Incessant research interest has been devoted to preparing graphene-based semiconductor nanocomposites as photocatalysts for a variety of applications. In this work, reduced graphene oxide (rGO)-TiO2 hybrid nanocrystals were fabricated through a novel and simple solvothermal synthetic route. Anatase TiO2 particles with an average diameter of 12 nm were uniformly dispersed on the rGO sheet. Slow hydrolysis reaction was successfully attained through the use of ethylene glycol and acetic acid mixed solvents coupled with an additional cooling step. The prepared rGO-TiO2 nanocomposites exhibited superior photocatalytic activity (0.135 μmol gcat-1 h-1) in the reduction of CO2 over graphite oxide and pure anatase. The intimate contact between TiO2 and rGO was proposed to accelerate the transfer of photogenerated electrons on TiO2 to rGO, leading to an effective charge anti-recombination and thus enhancing the photocatalytic activity. Furthermore, our photocatalysts were found to be active even under the irradiation of low-power energy-saving light bulbs, which renders the entire process economically and practically feasible.
  13. Leong KH, Tan LL, Mustafa AM
    Chemosphere, 2007 Jan;66(6):1153-9.
    PMID: 17027062
    In Malaysia, rivers are the main source of public water supplies. This study was conducted from 2002 to 2003 to determine the levels of selected organochlorine and organophosphate pesticides in the Selangor River in Malaysia. Surface water samples have been collected seasonally from nine sites along the river. A liquid-liquid extraction followed by gas chromatography-mass spectrometry technique was used to determine the trace levels of these pesticide residues. The organochlorine pesticides detected were lindane, heptachlor, endosulfan, dieldrin, endosulfan sulfate, o,p'-DDT, p,p'-DDT, o,p'-DDE and p,p'-DDE whereas for organophosphate pesticides, they were chlorpyrifos and diazinon. At the river upstream where a dam is located for public water supply, incidents of pesticide levels exceeding the European Economic Community Directive of water quality standards have occurred. Furthermore, the wetland ecosystems located at the downstream of the river which houses the fireflies community is being threatened by occasional pesticide levels above EPA limits for freshwater aquatic organisms. The occurrence of these residual pesticides in the Selangor River can be attributed to the intense agriculture and urban activity.
  14. Chung KM, Mohidin N, Yeow PT, Tan LL, O'Leary D
    Optom Vis Sci, 1996 Nov;73(11):695-700.
    PMID: 8950751
    We performed a vision screening of 1883 Chinese schoolchildren from 4 schools around Kuala Lumpur in June 1990. The group contained 1083-males and 800 females. Visual acuity, refractive error, oculomotor balance, and axial length were measured. The prevalence of myopia in Chinese schoolchildren was found to be 37% in the 6- to 12-year age group and 50% in the 13- to 18-year age group. Approximately 63% of the sample had unaided visual acuity of 6/6 or better and 24% had unaided acuity of 6/12 or worse. Six hundred twenty-five students (33%) failed the vision screening test and were referred for further examinations. The group which failed the vision screening test and had the highest rate of referral (46%) was the 11- to 12-year-old age group. The most common visual disorder was uncorrected myopia, accounting for 38% of the referrals (235 students). Only 26% of the sample were wearing a spectacle correction.
  15. Sonthanasamy RSA, Sulaiman NMN, Tan LL, Lazim AM
    PMID: 30954801 DOI: 10.1016/j.saa.2019.03.108
    Carbon dots (C-dots) were used to study the binding mechanisms with serum protein, bovine serum albumin (BSA) by using two notable binding systems known as non-covalent and covalent interaction. Interaction between C-dots and BSA were estimated by Stern-Volmer equation and Double Log Regression Model (DLRM). According to the fluorescent intensity, quenching of model carrier protein by C-dots was due to dynamic quenching for non-covalent and static quenching for covalent binding. The binding site constant, KA and number of binding site, for covalent interaction is 1754.7L/mol and n≈1 (0.6922) were determined by DLRM on fluorescence quenching results. The blue shift of the fluorescence spectrum, from 450nm to 421nm (non-covalent) and 430nm (covalent) and suggested that both the microenvironment of C-dots and protein changed in relation to the protein concentration. The fluorescence intensity results show that protein structure has a significant role in Protein-C-dots interactions and type of binding influence physicochemical properties of C-dots differently. Understanding to this bio interface is important to utilize both quantum dots and biomolecules for biomedical field. It can be a useful guideline to design further applications in biomedical and bioimaging.
  16. Sahudin MA, Su'ait MS, Tan LL, Abd Karim NH
    PMID: 33281086 DOI: 10.1016/j.saa.2020.119129
    Histamine is one of the important biomarkers for food spoilage in the food sectors. In the present study, a rapid and simple analytical tool has been developed to detect histamine as an indirect strategy to monitor food freshness level. Optical histamine sensor with carboxyl-substituted Schiff base zinc(II) complex with hydroxypropoxy side chain deposited onto titanium dioxide nanoparticles was fabricated and was found to respond successfully to histamine. The Schiff base zinc(II) complex-histamine binding generated an enhancement of the fluorescent signal. Under the optimal reaction condition, the developed sensor can detect down to 2.53 × 10-10 M in the range of between 1.0 × 10-9 and 1.0 × 10-5 M (R2 = 0.9868). Selectivity performance of the sensor towards histamine over other amines was confirmed. The sensor also displayed good reproducibility performances with low relative standard deviation values (1.45%-4.95%). Shelf-life studies suggested that the developed sensor remains stable after 60 days in histamine detection. More importantly, the proposed sensor has been successfully applied to determine histamine in salmon fillet with good recoveries. This strategy has a promising potential in the food quality assurance sectors, especially in controlling the food safety for healthy consumption among consumers.
  17. Ariffin EY, Tan LL, Abd Karim NH, Yook Heng L
    Sensors (Basel), 2018 Apr 12;18(4).
    PMID: 29649118 DOI: 10.3390/s18041173
    A sensitive and selective optical DNA biosensor was developed for dengue virus detection based on novel square-planar piperidine side chain-functionalized N,N'-bis-4-(hydroxysalicylidene)-phenylenediamine-nickel(II), which was able to intercalate via nucleobase stacking within DNA and be functionalized as an optical DNA hybridization marker. 3-Aminopropyltriethoxysilane (APTS)-modified porous silica nanospheres (PSiNs), was synthesized with a facile mini-emulsion method to act as a high capacity DNA carrier matrix. The Schiff base salphen complexes-labelled probe to target nucleic acid on the PSiNs renders a colour change of the DNA biosensor to a yellow background colour, which could be quantified via a reflectance transduction method. The reflectometric DNA biosensor demonstrated a wide linear response range to target DNA over the concentration range of 1.0 × 10-16-1.0 × 10-10 M (R² = 0.9879) with an ultralow limit of detection (LOD) at 0.2 aM. The optical DNA biosensor response was stable and maintainable at 92.8% of its initial response for up to seven days of storage duration with a response time of 90 min. The reflectance DNA biosensor obtained promising recovery values of close to 100% for the detection of spiked synthetic dengue virus serotypes 2 (DENV-2) DNA concentration in non-invasive human samples, indicating the high accuracy of the proposed DNA analytical method for early diagnosis of all potential infectious diseases or pathological genotypes.
  18. Vaani VV, Tang MM, Tan LL, Asmah J
    Med J Malaysia, 2018 06;73(3):125-130.
    PMID: 29962494 MyJurnal
    INTRODUCTION: Ultraviolet phototherapies are important treatment modalities for a wide range of dermatological conditions. We aim to describe the utilization of phototherapy in the Department of Dermatology Hospital Kuala Lumpur.

    METHODS: This is a 5-year retrospective audit on patients who underwent phototherapy between 2011 and 2015.

    RESULTS: There were 892 patients, M:F=1.08:1, aged from 4- 88 years, with a median age of 38.8 years who underwent phototherapy. Majority (58.9%) had skin phototype IV, followed by type III (37.7%) and type II (0.7%). There were 697(78.1%) who underwent NBUVB, 136 (15.2%) had topical PUVA, 22(2.5%) had oral PUVA, 12(1.4%) had UVA1 and 23(2.6%) had NBUVB with topical or oral PUVA/UVA1 at different time periods. The indications were psoriasis (46.6%), vitiligo (26.7%), atopic eczema (9.8%), pityriasis lichenoides chronica (5.3%), mycosis fungoides (3.9%), lichen planus (2.5%), nodular prurigo (2.2%), scleroderma (1.2%), alopecia areata (0.7%) and others. The median number of session received were 27 (range 1-252) for NBUVB, 30 (range 1-330) for topical PUVA, 30 (range 3-190) for oral PUVA and 24.5 (range 2-161) for UVA1. The acute adverse effects experienced by patients were erythema (18%), pruritus (16.3%), warmth (3.3%), blister formation (3.1%), cutaneous pain (2.4%), and xerosis (0.8%), skin swelling (0.7%) and phototoxicity (0.2%).

    CONCLUSION: Narrow-band UVB was the most frequently prescribed phototherapy modality in our center. The most common indication for phototherapy in our setting was psoriasis. Acute adverse events occurred in a third of patients, although these side effects were mild.

  19. Hassan RA, Heng LY, Ahmad A, Tan LL
    PLoS One, 2019;14(4):e0214580.
    PMID: 30990847 DOI: 10.1371/journal.pone.0214580
    A potentiometric whole cell biosensor based on immobilized marine bacterium, Pseudomonas carrageenovora producing κ-carrageenase and glycosulfatase enzymes for specific and direct determination of κ-carrageenan, is described. The bacterial cells were immobilized on the self-plasticized hydrogen ion (H+)-selective acrylic membrane electrode surface to form a catalytic layer. Hydrogen ionophore I was incorporated in the poly(n-butyl acrylate) [poly(nBA)] as a pH ionophore. Catalytic decomposition of κ-carrageenan by the bienzymatic cascade reaction produced neoagarobiose, an inorganic sulfate ion and a proton. The latter was detectable by H+ ion transducer for indirect potentiometric quantification of κ-carrageenan concentration. The use of a disposable screen-printed Ag/AgCl electrode (SPE) provided no cleaning requirement and enabled κ-carrageenan detection to be carried out conveniently without cross contamination in a complex food sample. The SPE-based microbial biosensor response was found to be reproducible with high reproducibility and relative standard deviation (RSD) at 2.6% (n = 3). The whole cell biosensor demonstrated a broad dynamic linear response range to κ-carrageenan from 0.2-100 ppm in 20 mM phosphate buffer saline (PBS) at pH 7.5 with a detection limit at 0.05 ppm and a Nernstian sensitivity of 58.78±0.87 mV/decade (R2 = 0.995). The biosensor showed excellent selectivity towards κ-carrageenan compared to other types of carrageenans tested e.g. ι-carrageenan and λ-carrageenan. No pretreatment to the food sample was necessary when the developed whole cell biosensor was employed for direct assay of κ-carrageenan in dairy product.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links