Salivaricin B is a 25 amino acid polycyclic peptide belonging to the type AII lantibiotics and first shown to be produced by Streptococcus salivarius. In this study we describe the bactericidal mode of action of salivaricin B against susceptible Gram-positive bacteria. The killing action of salivaricin B required micro-molar concentrations of lantibiotic whereas the prototype lantibiotic nisin A was shown to be potent at nano-molar levels. Unlike nisin A, salivaricin B did not induce pore formation or dissipate the membrane potential in susceptible cells. This was established by measuring the fluorescence of the tryptophan residue at position 17 when salivaricin B interacted with bacterial membrane vesicles. The absence of a fluorescence blue shift indicates a failure of salivaricin B to penetrate the membranes. On the other hand, salivaricin B interfered with cell wall biosynthesis, as shown by the accumulation of the final soluble cell wall precursor UDP-MurNAc-pentapeptide which is the backbone of the bacterial peptidoglycan. Transmission electron microscopy of salivaricin B-treated cells showed a reduction in cell wall thickness together with signs of aberrant septum formation in the absence of visible changes to cytoplasmic membrane integrity.