Displaying all 8 publications

Abstract:
Sort:
  1. Ta GC, Mokhtar MB, Peterson PJ, Yahaya NB
    Ind Health, 2011;49(6):765-73.
    PMID: 22020020
    The European Union (EU) and the World Health Organization (WHO) have applied different approaches to facilitate the implementation of the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS). The EU applied the mandatory approach by gazetting the EU Regulation 1272/2008 incorporating GHS elements on classification, labelling and packaging of substances and mixtures in 2008; whereas the WHO utilized a voluntary approach by incorporating GHS elements in the WHO guidelines entitled 'WHO Recommended Classification of Pesticides by Hazard' in 2009. We report on an analysis of both the mandatory and voluntary approaches practised by the EU and the WHO respectively, with close reference to the GHS 'purple book'. Our findings indicate that the mandatory approach practiced by the EU covers all the GHS elements referred to in the second revised edition of the GHS 'purple book'. Hence we can conclude that the EU has implemented the GHS particularly for industrial chemicals. On the other hand, the WHO guidelines published in 2009 should be revised to address concerns raised in this paper. In addition, both mandatory and voluntary approaches should be carefully examined because the classification results may be different.
  2. Yazid MFHA, Ta GC, Mokhtar M
    Saf Health Work, 2020 Jun;11(2):152-158.
    PMID: 32596009 DOI: 10.1016/j.shaw.2020.03.002
    Background: The Globally Harmonized System of Classification and Labeling of Chemicals (GHS) was developed to enhance chemical classification and hazard communication systems worldwide. However, some of the elements such as building blocks and data sources have the potential to cause "disharmony" to the GHS, particularly in its classification results. It is known that some countries have developed their own lists of classified chemicals in accordance with the GHS to "standardize" the classification results within their respective countries. However, the lists of classified chemicals may not be consistent among these countries.

    Method: In this study, the lists of classified chemicals developed by the European Union, Japan, Malaysia, and New Zealand were selected for comparison of classification results for carcinogenicity, germ cell mutagenicity, and reproductive toxicity.

    Results: The findings show that only 54%, 66%, and 37% of the classification results for each Carcinogen, Mutagen and Reproductive toxicants hazard classes, respectively are the same among the selected countries. This indicates a "moderate" level of consistency among the classified chemicals lists.

    Conclusion: By using classification results for the carcinogenicity, germ cell mutagenicity, and reproductive toxicity hazard classes, this study demonstrates the "disharmony" in the classification results among the selected countries. We believe that the findings of this study deserve the attention of the relevant international bodies.

  3. Ta GC, Mokhtar MB, Mohd Mokhtar HA, Ismail AB, Abu Yazid MF
    Ind Health, 2010;48(6):835-44.
    PMID: 20616463
    Chemical classification and labelling systems may be roughly similar from one country to another but there are significant differences too. In order to harmonize various chemical classification systems and ultimately provide consistent chemical hazard communication tools worldwide, the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) was endorsed by the United Nations Economic and Social Council (ECOSOC). Several countries, including Japan, Taiwan, Korea and Malaysia, are now in the process of implementing GHS. It is essential to ascertain the comprehensibility of chemical hazard communication tools that are described in the GHS documents, namely the chemical labels and Safety Data Sheets (SDS). Comprehensibility Testing (CT) was carried out with a mixed group of industrial workers in Malaysia (n=150) and factors that influence the comprehensibility were analysed using one-way ANOVA. The ability of the respondents to retrieve information from the SDS was also tested in this study. The findings show that almost all the GHS pictograms meet the ISO comprehension criteria and it is concluded that the underlying core elements that enhance comprehension of GHS pictograms and which are also essential in developing competent persons in the use of SDS are training and education.
  4. Taib M, Tan LL, Abd Karim NH, Ta GC, Heng LY, Khalid B
    Talanta, 2020 Jan 15;207:120321.
    PMID: 31594568 DOI: 10.1016/j.talanta.2019.120321
    An optical aptasensor-based sensing platform for rapid insulin detection was fabricated. Aminated porous silica microparticles (PSiMPs) were synthesized via a facile mini-emulsion method to provide large surface area for covalent immobilization of insulin-binding DNA aptamer (IGA3) by glutaraldehyde cross-linking protocol. A Nickel-salphen type complex with piperidine side chain [Ni(II)-SP] was synthesized with a simple one-pot reaction, and functionalized as an optical label due to strong π-π interaction between aromatic carbons of G-quadruplex DNA aptamer and planar aromatic groups of Ni(II)-SP to form the immobilized IGA3-Ni(II)-SP complex, i.e. the dye-labeled aptamer, thereby bringing yellow colouration to the immobilized G-quartet plane. Optical characterization of aptasensor towards insulin binding was carried out with a fiber optic reflectance spectrophotometer. The maximum reflectance intensity of the immobilized IGA3-Ni(II)-SP complex at 656 nm decreased upon binding with insulin as aptasensor changed to brownish orange colouration in the background. This allows optical detection of insulin as the colour change of aptasensor is dependent on the insulin concentration. The linear detection range of the aptasensor is obtained from 10 to 50 μIU mL-1 (R2 = 0.9757), which conformed to the normal fasting insulin levels in human with a limit of detection (LOD) at 3.71 μIU mL-1. The aptasensor showed fast response time of 40 min and long shelf life stability of >3 weeks. Insulin detection using healthy human serums with informed consent provided by participants suggests the DNA aptamer biosensor was in good agreement with ELISA standard method using BIOMATIK Human INS (Insulin) ELISA Kit.
  5. Hamid HHA, Latif MT, Uning R, Nadzir MSM, Khan MF, Ta GC, et al.
    Environ Monit Assess, 2020 May 08;192(6):342.
    PMID: 32382809 DOI: 10.1007/s10661-020-08311-4
    Benzene, toluene, ethylbenzene and xylenes (BTEX) are well known hazardous volatile organic compounds (VOCs) due to their human health risks and photochemical effects. The main objective of this study was to estimate BTEX levels and evaluate interspecies ratios and ozone formation potentials (OFP) in the ambient air of urban Kuala Lumpur (KL) based on a passive sampling method with a Tenax® GR adsorbent tube. Analysis of BTEX was performed using a thermal desorption (TD)-gas chromatography mass spectrometer (GCMS). OFP was calculated based on the Maximum Incremental Reactivity (MIR). Results from this study showed that the average total BTEX during the sampling period was 66.06 ± 2.39 μg/m3. Toluene (27.70 ± 0.97 μg/m3) was the highest, followed by m,p-xylene (13.87 ± 0.36 μg/m3), o-xylene (11.49 ± 0.39 μg/m3), ethylbenzene (8.46 ± 0.34 μg/m3) and benzene (3.86 ± 0.31 μg/m3). The ratio of toluene to benzene (T:B) is > 7, suggesting that VOCs in the Kuala Lumpur urban environment are influenced by vehicle emissions and other anthropogenic sources. The average of ozone formation potential (OFP) value from BTEX was 278.42 ± 74.64 μg/m3 with toluene and xylenes being the major contributors to OFP. This study also indicated that the average of benzene concentration in KL was slightly lower than the European Union (EU)-recommended health limit value for benzene of 5 μg/m3 annual exposure.
  6. Ahmed MF, Alam L, Mohamed CAR, Mokhtar MB, Ta GC
    PMID: 30241360 DOI: 10.3390/ijerph15102056
    The presence of toxic polonium-210 (Po-210) in the environment is due to the decay of primordial uranium-238. Meanwhile, several studies have reported elevated Po-210 radioactivity in the rivers around the world due to both natural and anthropogenic factors. However, the primary source of Po-210 in Langat River, Malaysia might be the natural weathering of granite rock along with mining, agriculture and industrial activities. Hence, this is the first study to determine the Po-210 activity in the drinking water supply chain in the Langat River Basin to simultaneously predict the human health risks of Po-210 ingestion. Therefore, water samples were collected in 2015⁻2016 from the four stages of the water supply chain to analyze by Alpha Spectrometry. Determined Po-210 activity, along with the influence of environmental parameters such as time-series rainfall, flood incidents and water flow data (2005⁻2015), was well within the maximum limit for drinking water quality standard proposed by the Ministry of Health Malaysia and World Health Organization. Moreover, the annual effective dose of Po-210 ingestion via drinking water supply chain indicates an acceptable carcinogenic risk for the populations in the Langat Basin at 95% confidence level; however, the estimated annual effective dose at the basin is higher than in many countries. Although several studies assume the carcinogenic risk of Po-210 ingestion to humans for a long time even at low activity, however, there is no significant causal study which links Po-210 ingestion via drinking water and cancer risk of the human. Since the conventional coagulation method is unable to remove Po-210 entirely from the treated water, introducing a two-layer water filtration system at the basin can be useful to achieve SDG target 6.1 of achieving safe drinking water supplies well before 2030, which might also be significant for other countries.
  7. Jeningsih, Tan LL, Ulianas A, Heng LY, Mazlan NF, Jamaluddin ND, et al.
    Sensors (Basel), 2020 Mar 25;20(7).
    PMID: 32218202 DOI: 10.3390/s20071820
    A DNA micro-optode for dengue virus detection was developed based on the sandwich hybridization strategy of DNAs on succinimide-functionalized poly(n-butyl acrylate) (poly(nBA-NAS)) microspheres. Gold nanoparticles (AuNPs) with an average diameter of ~20 nm were synthesized using a centrifugation-based method and adsorbed on the submicrometer-sized polyelectrolyte-coated poly(styrene-co-acrylic acid) (PSA) latex particles via an electrostatic method. The AuNP-latex spheres were attached to the thiolated reporter probe (rDNA) by Au-thiol binding to functionalize as an optical gold-latex-rDNA label. The one-step sandwich hybridization recognition involved a pair of a DNA probe, i.e., capture probe (pDNA), and AuNP-PSA reporter label that flanked the target DNA (complementary DNA (cDNA)). The concentration of dengue virus cDNA was optically transduced by immobilized AuNP-PSA-rDNA conjugates as the DNA micro-optode exhibited a violet hue upon the DNA sandwich hybridization reaction, which could be monitored by a fiber-optic reflectance spectrophotometer at 637 nm. The optical genosensor showed a linear reflectance response over a wide cDNA concentration range from 1.0 × 10-21 M to 1.0 × 10-12 M cDNA (R2 = 0.9807) with a limit of detection (LOD) of 1 × 10-29 M. The DNA biosensor was reusable for three consecutive applications after regeneration with mild sodium hydroxide. The sandwich-type optical biosensor was well validated with a molecular reverse transcription polymerase chain reaction (RT-PCR) technique for screening of dengue virus in clinical samples, e.g., serum, urine, and saliva from dengue virus-infected patients under informed consent.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links