Patients and Methods: A cross-sectional study was conducted at a single rehabilitation outpatient clinic from June to December 2019. Inclusion criteria were stroke duration of over four weeks, aged 18 years and above. Exclusion criteria were presence of concurrent conditions other than stroke that could also lead to spasticity. Recruited patients were divided into "Spasticity" and "No spasticity" groups. Univariate analysis was deployed to identify significant predictive spasticity factors between the two groups followed by a two-step clustering approach for determining group of characteristics that collectively contributes to the risk of developing spasticity in the "Spasticity" group.
Results: A total of 216 post-stroke participants were recruited. The duration after stroke (p < 0.001) and the absence of hemisensory loss (p = 0.042) were two significant factors in the "Spasticity" group revealed by the univariate analysis. From a total of 98 participants with spasticity, the largest cluster of individuals (40 patients, 40.8%) was those within less than 20 months after stroke with moderate stroke and absence of hemisensory loss, while the smallest cluster was those within less than 20 months after severe stroke and absence of hemisensory loss (21 patients, 21.4%).
Conclusion: Analyzing collectively the significant factors of developing spasticity may have the potential to be more clinically relevant in a heterogeneous post-stroke population that may assist in the spasticity management and treatment.
OBJECTIVE: The purpose of this study is to identify the changes in the neurobiological signals from EEG, to associate these with functional outcome measures scores, and to compare their associations in different therapy frequency for gait rehabilitation among subacute stroke individuals.
METHODS: A randomized, single-blinded, controlled study among patients with subacute stroke will be conducted with two groups: an intervention group (IG) and a control group (CG). Each participant in the IG and CG will receive therapy sessions three times a week (high frequency) and once a week (low frequency), respectively, for a total of 12 consecutive weeks. Each session will last for an hour with strengthening, balance, and gait training. The main variables to be assessed are the 6-Minute Walk Test (6MWT), Motor Assessment Scale (MAS), Berg Balance Scale (BBS), Modified Barthel Index (MBI), and quantitative EEG indices in the form of delta to alpha ratio (DAR) and delta-plus-theta to alpha-plus-beta ratio (DTABR). These will be measured at preintervention (R0) and postintervention (R1). Key analyses are to determine the changes in the 6MWT, MAS, BBS, MBI, DAR, and DTABR at R0 and R1 for the CG and IG. The changes in the DAR and DTABR will be analyzed for association with the changes in the 6MWT, MAS, BBS, and MBI to measure neuroplasticity changes for both the CG and IG.
RESULTS: We have recruited 18 participants so far. We expect to publish our results in early 2023.
CONCLUSIONS: These associations are expected to be positive in both groups, with a higher correlation in the IG compared to the CG, reflecting enhanced neuroplasticity changes and objective evaluation on the dose-response relationship.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/27935.
Objectives: Primary objective was to assess database variables, processes involved and web platform for their suitability with a view to provide guidance for a large scale global project. Secondary objective was to capture demographic and selected injury/safety data on patients with T-SCI with a view to formulate prevention strategies.
Setting: Nine centers from Asia.
Methods: All patients with T-SCI admitted for first time were included. International SCI Core Data Set and especially compiled Minimal Safety Data Set were used as data elements. Questionnaire was used for feedback from centers.
Results: Results showed relevance and appropriateness of processes, data variables and web platform of the study. Ease of entering and retrieval of data from web platform was confirmed. Cost of one year IDAPP study was USD 7780. 975 patients were enrolled. 790 (81%) were males. High falls (n = 513, 52%) as a cause and complete injuries (n = 547, 56%) were more common. There was a higher percentage of thoracic and lumbar injuries (n = 516, 53%).
Conclusions: The study confirms that establishing the SCI database is possible using the variables, processes and web platform of the pilot study. It also provides a low cost solution. Expansion to other centers/regions and including non-traumatic SCI would be the next step forward.