BACKGROUND DATA: The response of human blood to LLL irradiation gives important information about the mechanism of interaction of laser light with living organisms. Materials and methods Blood samples were collected into ethylenediaminetetraacetic acid (EDTA)-containing tubes, and each sample was divided into two equal aliquots, one to serve as control and the other for irradiation. The aliquot was subjected to laser irradiation for 20, 30, 40, or 50 min at a fixed power density of 0.03 W/cm(2). Mean cell volume (MCV) and red blood cell (RBC) counts were measured immediately after irradiation using a computerized hemtoanalyzer.
RESULTS: Significant decrease in RBC volume (p
METHODS: A customised polymethyl methacrylate (PMMA) cylindrical phantom was developed for performance evaluation of Planmeca ProMax 3D Mid digital dental CBCT unit. The fabricated phantom consists of four different layers for testing specific IQ parameters such as CT number accuracy and uniformity, noise and CT number linearity. The phantom was scanned using common scanning protocols in clinical routine (90.0 kV, 8.0 mA and 13.6 s). In region-of-interest (ROI) analysis, the mean CT numbers (in Hounsfield unit, HU) and noise for water and air were determined and compared with the reference values (0 HU for water and -1000 HU for air). For linearity test, the correlation between the measured HU of different inserts with their density was studied.
RESULTS: The average CT number were -994.1 HU and -2.4 HU, for air and water, respectively and the differences were within the recommended acceptable limit. The linearity test showed a strong positive correlation (R2 = 0.9693) between the measured HU and their densities.
CONCLUSION: The fabricated IQ phantom serves as a simple and affordable testing tool for digital dental CBCT imaging.
METHODS: A ball phantom was scanned using panoramic mode of the Planmeca ProMax 3D Mid CBCT unit (Planmeca, Helsinki, Finland) with standard exposure settings used in clinical practice (60 kV, 2 mA, and maximum FOV). An automated calculator algorithm was developed in MATLAB platform. Two parameters associated with panoramic image distortion such as balls diameter and distance between middle and tenth balls were measured. These automated measurements were compared with manual measurement using the Planmeca Romexis and ImageJ software.
RESULTS: The findings showed smaller deviation in distance difference measurements by proposed automated calculator (ranged 3.83 mm) as compared to manual measurements (ranged 5.00 for Romexis and 5.12 mm for ImageJ software). There was a significant difference (p