Displaying all 2 publications

Abstract:
Sort:
  1. Soreq L, Mohamed W
    Am J Neurodegener Dis, 2023;12(5):133-146.
    PMID: 38024391
    Alzheimer's disease (AD) is a devastative disease, the 1st most frequent neurodegenerative disease worldwide. Its prevalence is increasing and early detection methods as well as potential genomic based therapeutics are urgently needed.

    OBJECTIVES: To better characterize recent seq studies of AD and site recent relevant literature. Using single-cell RNA sequencing, the characteristics of neuronal cell populations in Alzheimer's disease (AD) have not been completely elucidated.

    METHODS: We conducted a dynamic and longitudinal bibliometric analysis to investigate existing studies on Single-cell RNA sequencing analysis and Alzheimer's Disease and identify data gaps and possible new research avenues.

    RESULTS: All AD papers concentrating on Single-cell RNA sequencing analysis were found using the search terms "Alzheimer's Disease", and "Single-cell RNA sequencing analysis" in the PubMed/MEDLINE database. Only English publications published between 2015 and 2023 were chosen using filters.

    CONCLUSIONS: Original English-language research publications disclosing Single-cell RNA sequencing analysis and Alzheimer's Disease were examined for inclusion. Two sets of independent reviewers discovered and extracted pertinent data. The bibliometric study was carried out using the R software packages Bibliometrix and Biblioshiny. The narrowed search yielded 158 publications, all published between 2015 and 2023. Yet, after applying filters and considering the inclusion requirements, the search results comprise just 51 original articles out of 158 articles. There were 107 articles eliminated. The importance of the discovery of Single-cell RNA sequencing analysis and Alzheimer's Disease a decade ago only grows with time. Our results have important implications for future studies of AD and may help researchers across the world better understand the global context of the Single-cell RNA sequencing analysis and Alzheimer's Disease link. This study puts emphasis on the critical need for more diverse participant demographics in Alzheimer's disease investigations.

  2. Soreq L, Bird H, Mohamed W, Hardy J
    PLoS One, 2023;18(2):e0277630.
    PMID: 36827281 DOI: 10.1371/journal.pone.0277630
    Alzheimer's disease is the most common neurological disease worldwide. Unfortunately, there are currently no effective treatment methods nor early detection methods. Furthermore, the disease underlying molecular mechanisms are poorly understood. Global bulk gene expression profiling suggested that the disease is governed by diverse transcriptional regulatory networks. Thus, to identify distinct transcriptional networks impacted into distinct neuronal populations in Alzheimer, we surveyed gene expression differences in over 25,000 single-nuclei collected from the brains of two Alzheimer's in disease patients in Braak stage I and II and age- and gender-matched controls hippocampal brain samples. APOE status was not measured for this study samples (as well as CERAD and THAL scores). Our bioinformatic analysis identified discrete glial, immune, neuronal and vascular cell populations spanning Alzheimer's disease and controls. Astrocytes and microglia displayed the greatest transcriptomic impacts, with the induction of both shared and distinct gene programs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links