Displaying all 6 publications

Abstract:
Sort:
  1. Ramesh T, Foo KL, R H, Sam AJ, Solayappan M
    Sci Rep, 2019 Nov 19;9(1):17039.
    PMID: 31745139 DOI: 10.1038/s41598-019-53476-9
    Detection of host integrated viral oncogenes are critical for early and point-of-care molecular diagnostics of virus-induced carcinoma. However, available diagnostic approaches are incapable of combining both cost-efficient medical diagnosis and high analytical performances. To circumvent this, we have developed an improved IDE-based nanobiosensor for biorecognition of HPV-16 infected cervical cancer cells through electrochemical impedance spectroscopy. The system is fabricated by coating gold (Au) doped zinc oxide (ZnO) nanorods interfaced with HPV-16 viral DNA bioreceptors on top of the Interdigitated Electrode (IDE) chips surface. Due to the concurrently improved sensitivity and biocompatibility of the designed nanohybrid film, Au decorated ZnO-Nanorod biosensors demonstrate exceptional detection of HPV-16 E6 oncogene, the cancer biomarker for HPV infected cervical cancers. This sensor displayed high levels of sensitivity by detecting as low as 1fM of viral E6 gene target. The sensor also exhibited a stable functional life span of more than 5 weeks, good reproducibility and high discriminatory properties against HPV-16. Sensor current responses are obtained from cultured cervical cancer cells which are close to clinical cancer samples. Hence, the developed sensor is an adaptable tool with high potential for clinical diagnosis especially useful for economically challenged countries/regions.
  2. Chai PF, Rathinam X, Solayappan M, Ahmad Ghazali AH, Subramaniam S
    Microscopy (Oxf), 2014 Oct;63(5):371-5.
    PMID: 24943903 DOI: 10.1093/jmicro/dfu022
    The current study focused on the microscopic studies of a native Bacillus thuringiensis strain isolated from Malaysia, Bt-S84-13a, that produced an unusual crystal type. Primary detection of parasporal inclusions using a phase contrast microscope presented one to two small crystal proteins in the sporulating cells of Bt-S84-13a. Compound light microscopic examination of autolysed Bt-S84-13a cells stained with 0.133% Coomassie Brilliant Blue showed two types of crystal morphology: small crystals independent of spores and spore-associated crystals. Surface structure analysis with a scanning electron microscope revealed spherical-like, coarse and wrinkled-looking crystal in Bt-S84-13a. A close-up observation of the crystal morphology using a transmission electron microscope also demonstrated two parasporal inclusions in Bt-S84-13a. One inclusion was deposited against the forespore and was in a shape of incomplete rectangular. Another smaller inclusion was developed within the exosporium and was rectangular in shape. However, the latter inclusion was found lack in another bacterial cell which was still in the early stages of sporulation. This unique crystal morphology may imply some biological potential in Bt-S84-13a.
  3. Jahan F, Chinni SV, Samuggam S, Reddy LV, Solayappan M, Su Yin L
    Int J Mol Sci, 2022 Jun 09;23(12).
    PMID: 35742906 DOI: 10.3390/ijms23126462
    Salmonella enterica serovar Typhi (S. typhi) is an intracellular pathogen belonging to the Enterobacteriaceae family, where biofilm (aggregation and colonization of cells) formation is one of their advantageous traits. Salmonella typhi is the causative agent of typhoid fever in the human body and is exceptionally host specific. It is transmitted through the fecal-oral route by consuming contaminated food or water. This subspecies is quite intelligent to evade the innate detection and immune response of the host body, leading to systemic dissemination. Consequently, during the period of illness, the gallbladder becomes a harbor and may develop antibiotic resistance. Afterwards, they start contributing to the continuous damage of epithelium cells and make the host asymptomatic and potential carriers of this pathogen for an extended period. Statistically, almost 5% of infected people with Salmonella typhi become chronic carriers and are ready to contribute to future transmission by biofilm formation. Biofilm development is already recognized to link with pathogenicity and plays a crucial role in persistency within the human body. This review seeks to discuss some of the crucial factors related to biofilm development and its mechanism of interaction causing pathogenicity. Understanding the connections between these things will open up a new avenue for finding therapeutic approaches to combat pathogenicity.
  4. Solayappan M, Azlan A, Khor KZ, Yik MY, Khan M, Yusoff NM, et al.
    Front Genet, 2021;12:767298.
    PMID: 35154242 DOI: 10.3389/fgene.2021.767298
    Hematological malignancies (HM) are a group of neoplastic diseases that are usually heterogenous in nature due to the complex underlying genetic aberrations in which collaborating mutations enable cells to evade checkpoints that normally safeguard it against DNA damage and other disruptions of healthy cell growth. Research regarding chromosomal structural rearrangements and alterations, gene mutations, and functionality are currently being carried out to understand the genomics of these abnormalities. It is also becoming more evident that cross talk between the functional changes in transcription and proteins gives the characteristics of the disease although specific mutations may induce unique phenotypes. Functional genomics is vital in this aspect as it measures the complete genetic change in cancerous cells and seeks to integrate the dynamic changes in these networks to elucidate various cancer phenotypes. The advent of CRISPR technology has indeed provided a superfluity of benefits to mankind, as this versatile technology enables DNA editing in the genome. The CRISPR-Cas9 system is a precise genome editing tool, and it has revolutionized methodologies in the field of hematology. Currently, there are various CRISPR systems that are used to perform robust site-specific gene editing to study HM. Furthermore, experimental approaches that are based on CRISPR technology have created promising tools for developing effective hematological therapeutics. Therefore, this review will focus on diverse applications of CRISPR-based gene-editing tools in HM and its potential future trajectory. Collectively, this review will demonstrate the key roles of different CRISPR systems that are being used in HM, and the literature will be a representation of a critical step toward further understanding the biology of HM and the development of potential therapeutic approaches.
  5. Jaafar MH, Xu P, Mageswaran UM, Balasubramaniam SD, Solayappan M, Woon JJ, et al.
    J Anim Sci Technol, 2024 Jan;66(1):178-203.
    PMID: 38618031 DOI: 10.5187/jast.2023.e93
    Constipation, which refers to difficulties in defecation and infrequent bowel movement in emptying the gastrointestinal system that ultimately produces hardened fecal matters, is a health concern in livestock and aging animals. The present study aimed to evaluate the potential effects of dairy-isolated lactic acid bacteria (LAB) strains to alleviate constipation as an alternative therapeutic intervention for constipation treatment in the aging model. Rats were aged via daily subcutaneous injection of D-galactose (600 mg/body weight [kg]), prior to induction of constipation via oral administration of loperamide hydrochloride (5 mg/body weight [kg]). LAB strains (L. fermentum USM 4189 or L. plantarum USM 4187) were administered daily via oral gavage (1 × 10 Log CFU/day) while the control group received sterile saline. Aged rats as shown with shorter telomere lengths exhibited increased fecal bulk and soften fecal upon administration of LAB strains amid constipation as observed using the Bristol Stool Chart, accompanied by a higher fecal moisture content as compared to the control (p < 0.05). Fecal water-soluble metabolite profiles showed a reduced concentration of threonine upon administration of LAB strains compared to the control (p < 0.05). Histopathological analysis also showed that the administration of LAB strains contributed to a higher colonic goblet cell count as compared to the control (p < 0.05). The present study illustrates the potential of dairy-sourced LAB strains as probiotics to ameliorate the adverse effect of constipation amid aging, and as a potential dietary intervention strategy for dairy foods including yogurt and cheese.
  6. Keya TA, Balakrishnan SS, Solayappan M, Dheena Dhayalan SS, Subramaniam S, An LJ, et al.
    PLoS One, 2024;19(11):e0310435.
    PMID: 39509412 DOI: 10.1371/journal.pone.0310435
    Malaysia, particularly Pahang, experiences devastating floods annually, causing significant damage. The objective of the research was to create a flood susceptibility map for the designated area by employing an Ensemble Machine Learning (EML) algorithm based on geographic information system (GIS). By analyzing nine key factors from a geospatial database, flood susceptibility map was created with the ArcGIS software (ESRI ArcGIS Pro v3.0.1 x64). The Random Forest (RF) model was employed in this study to categorize the study area into distinct flood susceptibility classes. The Feature selection (FS) method was used to ranking the flood influencing factors. To validate the flood susceptibility models, standard statistical measures and the Area Under the Curve (AUC) were employed. The FS ranking demonstrated that the primary attributes to flooding in the study region are rainfall and elevation, with slope, geology, curvature, flow accumulation, flow direction, distance from the river, and land use/land cover (LULC) patterns ranking subsequently. The categories of 'very high' and 'high' class collectively made up 37.1% and 26.3% of the total area, respectively. The flood vulnerability assessment of Pahang found that the Eastern, Southern, and central regions were at high risk of flooding due to intense precipitation, low-lying topography with steep inclines, proximity to the shoreline and rivers, and abundant flooded vegetation, crops, urban areas, bare ground, and rangeland. Conversely, areas with dense tree canopies or forests were less susceptible to flooding in this research area. The ROC analysis demonstrated strong performance on the validation datasets, with an AUC value of >0.73 and accuracy scores exceeding 0.71. Research on flood susceptibility mapping can enhance risk reduction strategies and improve flood management in vulnerable areas. Technological advancements and expertise provide opportunities for more sophisticated methods, leading to better prepared and resilient communities.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links