OBJECTIVE: This study aimed to determine the effectiveness of annatto-tocotrienol on the bone turnover markers and bone histomorphometry in a model of male osteoporosis induced by buserelin (a GnRH agonist).
METHODS: Forty-six three-months-old male Sprague-Dawley rats (three months old; 300-350 g) were randomly divided into six groups. The baseline control group (n = 6) was sacrificed at the onset of the study. The normal control group (n = 8) received corn oil (the vehicle of tocotrienol) orally daily and normal saline (the vehicle of buserelin) subcutaneously daily. The buserelin control (n = 8) received corn oil orally daily and subcutaneous buserelin injection 75 μg/kg/day daily. The calcium control (n = 8) received 1% calcium in drinking water and subcutaneous buserelin injection 75 μg/kg/day. The remaining rats were treated with two different treatments, i.e., (1) oral annatto tocotrienol at 60 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8); (2) oral annatto tocotrienol at 100 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8). The rats were injected with calcein twice before being sacrificed to label the bones. The rats were euthanized, and their blood and right femur were harvested at the end of the treatment for bone turnover markers and bone histomorphometry examination.
RESULTS: Both serum osteocalcin and C-telopeptide of type 1 collagen were not significantly different between treated groups and buserelin control (P > 0.05). The buserelin control group had a significantly lower bone volume and higher eroded surface compared with the normal control group (P
DISCUSSION: Several treatment options are available for different stages of prostate cancer. Hormone therapy known as androgen deprivation therapy (ADT) is the first line treatment used to treat advanced prostate cancer. Chemical castration by gonadotropin-releasing hormone agonists suppresses lutenizing hormone production, which in turn inhibits the production of testosterone and dihydrotestosterone. This will prevent the growth of prostate cancer cells. However, ADT causes deleterious effects on bone health because the androgens are essential in preserving optimal bone health in men.
CONCLUSION: Various observational studies showed that long-term ADT for advanced or metastatic prostate cancer was associated with decreased bone mineral density, as well as altered body composition that might affect bone health. Considering the potential impact of osteoporotic fracture, interventions to mitigate these skeletal adverse effects should be considered by physicians when initiating ADT on their patients.