Co(III) sarcophagine-type cage molecules, [Co(diCLsar)](3+) or [Co(HONOsar)](3+), form either 1 : 1 or 1 : 2 host-guest inclusion complexes with mono-phosphonium cations and sodium p-sulfonatocalix[4]arene in the solid state yielding complex I [p-sulfonatocalix[4]arene·Co(diCLsar)·2{benzyltriphenylphosphonium}], complex II [2{p-sulfonatocalix[4]arene}·Co(diCLsar)·3{tetraphenylphosphonium}] and complex III [p-sulfonatocalix[4]arene·Co(HONOsar)·tetraphenylphosphonium]. The diversity of the structural types of these multi-component systems, including the orientation of the Co(III) molecules in the cavities of the calixarenes, depends on the nature of their terminal functional groups. The secondary coordination interactions binding between the Co(III) molecules and p-sulfonatocalix[4]arene have also been investigated in water using NMR techniques.
Addition of 1-alkyl-3-methylimidazolium (C(n)-mim) cations 3-5 to a mixture of bis-phosphonium cation 2 and sodium p-sulfonatocalix[4]arene (1) in the presence of lanthanide ions results in the selective binding of an imidazolium cation into the cavity of the calixarene. The result is a multi-layered solid material with an inherently flexible interplay of the components. Incorporating ethyl-, n-butyl- or n-hexyl-mim cations into the multi-layers results in significant perturbation of the structure, the most striking effect is the tilting of the plane of the bowl-shaped calixarene relative to the plane of the multi-layer, with tilt angles of 7.2, 28.9 and 65.5 degrees , respectively. The lanthanide ions facilitate complexation, but are not incorporated into the structures and, in all cases, the calixarene takes on a 5- charge, with one of the lower-rim phenolic groups deprotonated. ROESY NMR experiments and other (1)H NMR spectroscopy studies establish the formation of 1:1 supermolecules of C(n)-mim and calixarene, regardless of the ratio of the two components, and indicate that the supermolecules undergo rapid exchange on the NMR spectroscopy timescale.
We report on the assembly of three-fold axially compressed icosahedral arrays of the bowl shaped p-sulfonatocalix[4]arene molecules in the solid-state, intricately bound to dipicolinate and yttrium(iii) ions, with the compression reflected in Hirshfeld surface analyses. Solution studies show dissolution of the icosahedra intact, but with a geometrical rearrangement to regular icosahedra.
Single-crystal X-ray diffraction studies for a variety of metal ion complexes of functionalised sarcophagines (sarcophagine=sar=3,6,10,13,16,19-hexa-azabicyclo[6.6.6]icosane) have further confirmed not only that the form of the metal ion/sar unit is unique for each metal, albeit with a sensitivity of the conformation to the associated counter anions, but also that for any given metal and ligand substituent, the dimensions (bond lengths and angles) of the complex and the substituent at the secondary nitrogen centres do not differ significantly from those of the isolated components. Despite this, where the substituent contains reactive sites, the reactivity differs markedly from that of their form in an uncoordinated substrate. Rationalisations are offered for these differences, in part through the use of Hirshfeld surface analysis of the intermolecular interactions. The kinetic inertness of the complexes means that the metal ions can be considered to act as regioselective protecting groups.