Displaying all 3 publications

Abstract:
Sort:
  1. Hasan MM, Ahmed QU, Mat Soad SZ, Tunna TS
    Biomed Pharmacother, 2018 May;101:833-841.
    PMID: 29635892 DOI: 10.1016/j.biopha.2018.02.137
    Diabetes mellitus is a chronic disease which has high prevalence. The deficiency in insulin production or impaired insulin function is the underlying cause of this disease. Utilization of plant sources as a cure of diabetes has rich evidence in the history. Recently, the traditional medicinal plants have been investigated scientifically to understand the underlying mechanism behind antidiabetic potential. In this regard, a substantial number of in vivo and in vitro models have been introduced for investigating the bottom-line mechanism of the antidiabetic effect. A good number of methods have been reported to be used successfully to determine antidiabetic effects of plant extracts or isolated compounds. This review encompasses all the possible methods with a list of medicinal plants which may contribute to discovering a novel drug to treat diabetes more efficaciously with the minimum or no side effects.
  2. Umar A, Ahmed QU, Muhammad BY, Dogarai BB, Soad SZ
    J Ethnopharmacol, 2010 Aug 19;131(1):140-5.
    PMID: 20600771 DOI: 10.1016/j.jep.2010.06.016
    The present study was aimed to investigate the anti-diabetic potential of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in vivo with regard to prove its efficacy by local herbalists in the treatment of diabetes frailties.
  3. Roheem FO, Mat Soad SZ, Ahmed QU, Ali Shah SA, Latip J, Zakaria ZA
    Molecules, 2019 Mar 13;24(6).
    PMID: 30871172 DOI: 10.3390/molecules24061006
    Digestive enzymes and free radical inhibitors are used to prevent complications resulting from diabetes. Entadaspiralis (family Leguminosae), which is a well-known medicinal plant in herbal medicine due to its various traditional and medicinal applications, was studied. Crude extracts were successively obtained from the stem bark using petroleum ether, chloroform and methanol as extracting solvents. The antioxidant activity of all the extracts, fractions and isolated compounds were estimated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene and 2,2'-azinobis(-3-ethylbenzothiazine-6-sulfonic acid) (ABTS) assays, while digestive enzymes inhibitory activity was assessed using α-amylase and α-glucosidase inhibitory methods. Structure elucidation of pure compounds was achieved through different spectroscopic analysis methods. Fractionation and purification of the most active methanol extract resulted in the isolation of a ferulic ester namely; (e)-hexyl 3-(4-hydroxy-3-methoxyphenyl) acrylate (FEQ-2) together with five known phenolic constituents, identified as kaempferol (FEQ-3), 5,4'-dihydroxy-3,7,3'-trimethoxyflavone (FEQ-2), gallic acid (FEQ-5), (+)-catechin (FEQ-7) and (-)-epicatechin (FEQ-8). FEQ-5 exhibited the strongest antioxidant and enzyme inhibitory activities followed by FEQ-3 and FEQ-4. FEQ-2 also displayed potent free radical scavenging activity with IC50 values of 13.79 ± 2.13 (DPPH) and 4.69 ± 1.25 (ABTS) µg/mL, respectively. All other compounds were found active either against free radicals or digestive enzymes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links