Cyst formation in the parameatal area is a relatively rare entity and not many cases have been reported in the literature. Two such cases are reported here. First patient was a 46 year old sexually active male who developed a spherical, cystic swelling of 1 cm in size on right lip of external urethral meatus. The second case was a 4 year old boy who presented with asymptomatic recurrent left parameatal swelling. In both the cases, cysts were completely excised and defects were sutured. Histologically, the cyst walls were lined by tall squamous and columnar epithelium. Good cosmetic results were obtained in these two cases without any recurrence at 2 two months follow up.
This study is an attempt for comprehensive, combining experimental data with advanced analytical techniques and machine learning for a thorough understanding of the factors influencing the wear and cutting performance of multi-blade diamond disc cutters on granite blocks. A series of sawing experiments were performed to evaluate the wear and cutting performance of multi blade diamond disc cutters with varying diameters in the processing of large-sized granite blocks. The multi-layer diamond segments comprising the Iron (Fe) based metal matrix were brazed on the sawing blades. The segment's wear was studied through micrographs and data obtained from the Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDS). Granite rock samples of nine varieties were tested in the laboratory to determine the quantitative rock parameters. The contribution of individual rock parameters and their combined effects on wear and cutting performance of multi blade saw were correlated using statistical machine learning methods. Moreover, predictive models were developed to estimate the wear and cutting rate based on the most significant rock properties. The point load strength index, uniaxial compressive strength, and deformability, Cerchar abrasivity index, and Cerchar hardness index were found to be the significant variables affecting the sawing performance.
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.