Displaying all 4 publications

Abstract:
Sort:
  1. Gupta S, Mishra KP, Kumar B, Singh SB, Ganju L
    J Ethnopharmacol, 2020 Oct 28;261:113022.
    PMID: 32569719 DOI: 10.1016/j.jep.2020.113022
    ETHNOPHARMACOLOGICAL RELEVANCE: Traditional plant-derived medicines have enabled the mankind in curing the wide spectrum of diseases throughout the ages. Andrographis paniculata (Burm.f.) Nees, is one of the traditional plant used as a folk medicine for the management of inflammation, arthritis, viral-bacterial infections and other ailments in India, China, Malaysia and other South-East Asian countries. Its major bioactive compound; andrographolide, a diterpenoid, also exerts cytoprotective properties and is reported to be effective in neuroprotection, hepatoprotection, etc. AIM: The study is aimed to explore the role of andrographolide in treatment of complete freund's adjuvant (CFA) induced arthritis.

    MATERIALS AND METHODS: The influx of immune cells, release of pro-inflammatory cytokines and subsequent accumulation of synovial fluid (swelling) and pain manifest into the disease. The present study used CFA induced Balb/c mice model and treated them intraperitoneally with andrographolide and dexamethasone (used as a positive control) on alternate days for six days. After 6 days, blood and peritoneal macrophages were collected to evaluate the expression of various arthritic markers and paw edema was measured on all days.

    RESULTS: The in vitro and ex vivo experiments showed that andrographolide treated animal group had reduced paw edema, cell cytotoxicity and nitric oxide production than dexamethasone treated animal group. Further, the study revealed the mechanistic role of andrographolide in treatment of arthritis by suppressing battery of molecules like COX-2, NF-κB, p-p38, CD40, TNF-α, IL-1β and IL-6 involved in arthritis.

    CONCLUSION: The study showed the potent anti-arthritic effects of andrographolide and warrants further investigations on andrographolide for the development of safe and effective anti-arthritic drug.

  2. Begum N, Mandhare A, Tryphena KP, Srivastava S, Shaikh MF, Singh SB, et al.
    Front Aging Neurosci, 2022;14:1048333.
    PMID: 36583185 DOI: 10.3389/fnagi.2022.1048333
    Gut-brain axis is a dynamic, complex, and bidirectional communication network between the gut and brain. Changes in the microbiota-gut-brain axis are responsible for developing various metabolic, neurodegenerative, and neuropsychiatric disorders. According to clinical and preclinical findings, the gut microbiota is a significant regulator of the gut-brain axis. In addition to interacting with intestinal cells and the enteric nervous system, it has been discovered that microbes in the gut can modify the central nervous system through metabolic and neuroendocrine pathways. The metabolites of the gut microbiome can modulate a number of diseases by inducing epigenetic alteration through DNA methylation, histone modification, and non-coding RNA-associated gene silencing. Short-chain fatty acids, especially butyrate, are well-known histone deacetylases inhibitors. Similarly, other microbial metabolites such as folate, choline, and trimethylamine-N-oxide also regulate epigenetics mechanisms. Furthermore, various studies have revealed the potential role of microbiome dysbiosis and epigenetics in the pathophysiology of depression. Hence, in this review, we have highlighted the role of gut dysbiosis in epigenetic regulation, causal interaction between host epigenetic modification and the gut microbiome in depression and suggest microbiome and epigenome as a possible target for diagnosis, prevention, and treatment of depression.
  3. Mourya A, Shubhra, Bajwa N, Baldi A, Singh KK, Pandey M, et al.
    Mini Rev Med Chem, 2023;23(9):992-1032.
    PMID: 35546778 DOI: 10.2174/1389557522666220511140527
    Osteoarthritis (OA), a chronic degenerative musculoskeletal disorder, progressively increases with age. It is characterized by progressive loss of hyaline cartilage followed by subchondral bone remodeling and inflammaging. To counteract the inflammation, synovium releases various inflammatory and immune mediators along with metabolic intermediates, which further worsens the condition. However, even after recognizing the key molecular and cellular factors involved in the progression of OA, only disease-modifying therapies are available such as oral and topical NSAIDs, opioids, SNRIs, etc., providing symptomatic treatment and functional improvement instead of suppressing OA progression. Long-term use of these therapies leads to various life-threatening complications. Interestingly, mother nature has numerous medicinal plants containing active phytochemicals that can act on various targets involved in the development and progression of OA. Phytochemicals have been used for millennia in traditional medicine and are promising alternatives to conventional drugs with a lower rate of adverse events and efficiency frequently comparable to synthetic molecules. Nevertheless, their mechanism of action in many cases is elusive and uncertain. Even though many in vitro and in vivo studies show promising results, clinical evidence is scarce. Studies suggest that the presence of carbonyl group in the 2nd position, chloro in the 6th and an electron- withdrawing group at the 7th position exhibit enhanced COX-2 inhibition activity in OA. On the other hand, the presence of a double bond at the C2-C3 position of C ring in flavonoids plays an important role in Nrf2 activation. Moreover, with the advancements in the understanding of OA progression, SARs (structure-activity relationships) of phytochemicals and integration with nanotechnology have provided great opportunities for developing phytopharmaceuticals. Therefore, in the present review, we have discussed various promising phytomolecules, SAR as well as their nano-based delivery systems for the treatment of OA to motivate the future investigation of phytochemical-based drug therapy.
  4. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links