INTRODUCTION: This study ascertains the minimum level of follow-up exercise required to maintain bone gains induced by an 8-week jumping exercise in rats.
METHODS: Twelve groups of 12-week old rats (n = 10 rats per group) were given either no exercise for 8 (8S) or 32 weeks (32S), or received 8 weeks of standard training program (8STP) that consisted of 200 jumps per week, given at 40 jumps per day for 5 days per week, followed by 24 weeks of exercise at loads of either 40 or 20 or 10 jumps per day, for either 5, or 3, or 1 day/week. Bone mass, strength, and morphometric properties were measured in the right tibia. Data were analyzed using one-way analyses of variance.
RESULTS: Bone mass, strength, mid-shaft periosteal perimeter and cortical area were significantly (p < 0.05) higher in the rats given 8STP than that in the 8S group. The minimal level of exercise required to maintain the bone gains was 31, 36, 25, and 21 jumps per week for mass, strength, periosteal perimeter and cortical area, respectively.
CONCLUSIONS: Eight weeks of jumping exercise-induced bone gains could be maintained for a period of 24 weeks with follow-up exercise consisting of 11% to 18% of the initial exercise load.
METHOD AND MATERIAL: Fresh, vaginally delivered placentae from ten normotensive pregnant women and nine women with pre-eclampsia were carefully dissected and 4 gm each of amnion, chorion laeve, placental plate chorion, fetal placenta (fetal surface of the placenta) and maternal placenta (surface of the placenta attached to the uterine wall) were obtained. These tissues were then thoroughly washed in a 0.5 M phosphate buffer, pH 7.5, at room temperature and then individually homogenized for one minute in 4 ml of the same buffer. After centrifugation the supernatant was removed. The pellet was re-suspended in buffer, re-homogenized and then centrifuged. The supernatant was removed and the procedure was repeated once again and the three supernatants of each tissue were pooled. Endothelin-1 was estimated by RIA. All results are presented as mean+/-SEM. Statistical analysis was performed using students 't' test for unpaired samples and a 'p' value of <0.05 was considered significant.
RESULTS: In tissues from normotensive pregnant women, no significant differences were evident in endothelin-1 concentrations in the chorion laeve, fetal placenta and maternal placenta but were significantly higher than those in the amnion and placental plate chorion (p<0.01). In tissues from pre-eclamptic women, no significant differences were evident between endothelin-1 concentrations in the chorion laeve, placental plate chorion and fetal placenta. Mean endothelin-1 concentration in the amnion and maternal placenta were significantly lower than those in chorion laeve, placental plate chorion and fetal placenta (p<0.01). Endothelin-1 concentrations were significantly higher in the amnion, chorion laeve, placental plate chorion and fetal placenta from women with pre-eclampsia when compared to tissues from normotensive pregnant women (p<0.01).
CONCLUSIONS: Endothelin-1 levels were significantly higher in the placental tissues from women with pre-eclampsia. Endothelin-1, being a powerful vasoconstrictor, could cause significant vasoconstriction in the placental vasculature, and alterations in endothelin-1 levels in placental vasculature may therefore have a role in the pathogenesis of pre-eclampsia.