Displaying all 3 publications

Abstract:
Sort:
  1. Olival KJ, Dick CW, Simmons NB, Morales JC, Melnick DJ, Dittmar K, et al.
    Parasit Vectors, 2013 Aug 08;6:231.
    PMID: 23924629 DOI: 10.1186/1756-3305-6-231
    BACKGROUND: Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date.

    METHODS: We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities.

    RESULTS: All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure.

    CONCLUSIONS: The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus species in the region. We demonstrate the utility of parasite genetics as an additional layer of information to measure host movement and interspecific host contact. These approaches may have wide implications for understanding zoonotic, epizootic, and enzootic disease dynamics. Bat flies may play a role as vectors of disease in bats, and their competence as vectors of bacterial and/or viral pathogens is in need of further investigation.

  2. Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, et al.
    mBio, 2021 Jan 12;12(1).
    PMID: 33436435 DOI: 10.1128/mBio.02698-20
    Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links