With increasing prevalence and an expected rise in disease burden, cancer is a cause of concern for African healthcare. The cancer burden in Africa is expected to rise to 2.1 million new cases per year and 1.4 million deaths annually by the year 2040. Even though efforts are being made to improve the standard of oncology service delivery in Africa, the current state of cancer care is not yet on par with the rise in the cancer burden. Cutting-edge technologies and innovations are being developed across the globe to augment the battle against cancer; however, many of them are beyond the reach of African countries. Modern oncology innovations targeted to ward Africa would be promising to address the high cancer mortality rates. The innovations should be cost-effective and widely accessible to tackle the rapidly rising mortality rate on the African continent. Though it may seem promising, a multidisciplinary approach is required to overcome the challenges associated with the development and implementation of modern oncology innovations in Africa.
Alzheimer's disease (AD) constitutes a multifactorial neurodegenerative pathology characterized by cognitive deterioration, personality alterations, and behavioral shifts. The ongoing brain impairment process poses significant challenges for therapeutic interventions due to activating multiple neurotoxic pathways. Current pharmacological interventions have shown limited efficacy and are associated with significant side effects. Approaches focusing on the early interference with disease pathways, before activation of broad neurotoxic processes, could be promising to slow down symptomatic progression of the disease. Curcumin-an integral component of traditional medicine in numerous cultures worldwide-has garnered interest as a promising AD treatment. Current research indicates that curcumin may exhibit therapeutic potential in neurodegenerative pathologies, attributed to its potent anti-inflammatory and antioxidant properties. Additionally, curcumin and its derivatives have demonstrated an ability to modulate cellular pathways via epigenetic mechanisms. This article aims to raise awareness of the neuroprotective properties of curcuminoids that could provide therapeutic benefits in AD. The paper provides a comprehensive overview of the neuroprotective efficacy of curcumin against signaling pathways that could be involved in AD and summarizes recent evidence of the biological efficiency of curcumins in vivo.