Displaying all 2 publications

Abstract:
Sort:
  1. Mapeala R, Siew NM
    Springerplus, 2015;4:741.
    PMID: 26640753 DOI: 10.1186/s40064-015-1535-0
    The paper described the development and validation of the Test of Science Critical Thinking (TSCT) to measure the three critical thinking skill constructs: comparing and contrasting, sequencing, and identifying cause and effect. The initial TSCT consisted of 55 multiple choice test items, each of which required participants to select a correct response and a correct choice of critical thinking used for their response. Data were obtained from a purposive sampling of 30 fifth graders in a pilot study carried out in a primary school in Sabah, Malaysia. Students underwent the sessions of teaching and learning activities for 9 weeks using the Thinking Maps-aided Problem-Based Learning Module before they answered the TSCT test. Analyses were conducted to check on difficulty index (p) and discrimination index (d), internal consistency reliability, content validity, and face validity. Analysis of the test-retest reliability data was conducted separately for a group of fifth graders with similar ability. Findings of the pilot study showed that out of initial 55 administered items, only 30 items with relatively good difficulty index (p) ranged from 0.40 to 0.60 and with good discrimination index (d) ranged within 0.20-1.00 were selected. The Kuder-Richardson reliability value was found to be appropriate and relatively high with 0.70, 0.73 and 0.92 for identifying cause and effect, sequencing, and comparing and contrasting respectively. The content validity index obtained from three expert judgments equalled or exceeded 0.95. In addition, test-retest reliability showed good, statistically significant correlations ([Formula: see text]). From the above results, the selected 30-item TSCT was found to have sufficient reliability and validity and would therefore represent a useful tool for measuring critical thinking ability among fifth graders in primary science.
  2. Siew NM, Amir N, Chong CL
    Springerplus, 2015;4:8.
    PMID: 25674494 DOI: 10.1186/2193-1801-4-8
    Whilst much attention has focused on project-based approaches to teaching Science, Technology, Engineering and Mathematics (STEM) subjects, little has been reported on the views of South-East Asian science teachers on project-based STEM approaches. Such knowledge could provide relevant information for education training institutions on how to influence innovative teaching of STEM subjects in schools. This article reports on a study that investigated the perceptions of 25 pre-service and 21 in-service Malaysian science teachers in adopting an interdisciplinary project-based STEM approach to teaching science. The teachers undertook an eight hour workshop which exposed them to different science-based STEM projects suitable for presenting science content in the Malaysian high school science syllabus. Data on teachers' perceptions were captured through surveys, interviews, open-ended questions and classroom discussion before and at the end of the workshop. Study findings showed that STEM professional development workshops can provide insights into the support required for teachers to adopt innovative, effective, project-based STEM approaches to teaching science in their schools.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links