Displaying all 2 publications

Abstract:
Sort:
  1. Mirani OI, Harah ZM, Sidik BJ
    Pak J Biol Sci, 2012 Jul 01;15(13):653-7.
    PMID: 24218936
    Trapa bispinosa is a freshwater macrophyte occurring in stagnant or slow moving water streams. Information on assessment of seeds storage and germination of Trapa bispinosa is less available in literature. Dependence on fresh seeds abundance only from natural environment for plant propagation or cultivation may lead to insufficient supply of seeds due to various biotic and abiotic factors. This study evaluated the viability and germination of Trapa bispinosa seeds stored in zip-lock plastic bag at low temperature of 7 degrees C for six months and fresh seeds. In addition germinating seeds progressive development to juvenile plants was recorded and described. Experiments were conducted where stored and fresh seeds were soaked in 62 x 45 x 54 cm glass tanks filled with aged tap water to the level of 15 cm depth. Stored seeds showed low percentage germination of 2.82% compared to fresh seeds which was 71.19%. Eight distinct developmental stages were identified from germinating seeds to juvenile plants. Both stored and fresh seeds produced plants of similar morphology but stored seeds progressive development from germination, seedling to juvenile plants needed longer duration to achieve. The storage of seed at low temperature at 7 degrees C for six months showed reduced viability and also vigorousity. Improved methods should be developed for Trapa seeds storage taking into account of the seeds' endurance to dryness and moisture levels in order to maintained seeds viability for future uses either for production, research purposes or even conservation and restoration programs.
  2. Nordiah B, Harah ZM, Sidik BJ, Hazma WN
    Pak J Biol Sci, 2012 Jul 01;15(13):621-8.
    PMID: 24218931
    Azolla pinnata R.Br. growth performance experiments in different water sources were conducted from May until July 2011 at Aquaculture Research Station, Puchong, Malaysia. Four types of water sources (waste water, drain water, paddy field water and distilled water) each with different nutrient contents were used to grow and evaluate the growth performance of A. pinnata. Four water sources with different nutrient contents; waste, drain, paddy and distilled water as control were used to evaluate the growth performance of A. pinnata. Generally, irrespective of the types of water sources there were increased in plant biomass from the initial biomass (e.g., after the first week; lowest 25.2% in distilled water to highest 133.3% in drain water) and the corresponding daily growth rate (3.61% in distilled water to 19.04% in drain water). The increased in biomass although fluctuated with time was consistently higher in drain water compared to increased in biomass for other water sources. Of the four water sources, drain water with relatively higher nitrate concentration (0.035 +/- 0.003 mg L(-l)) and nitrite (0.044 +/- 0.005 mg L(-1)) and with the available phosphate (0.032 +/- 0.006 mg L(-1)) initially provided the most favourable conditions for Azolla growth and propagation. Based on BVSTEP analysis (PRIMER v5), the results indicated that a combination of more than one nutrient or multiple nutrient contents explained the observed increased in biomass of A. pinnata grown in the different water sources.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links