METHODS: A user-friendly software was developed to accurately predict the individual size-specific dose estimation of paediatric patients undergoing computed tomography (CT) scans of the head, thorax, and abdomen. The software includes a calculation equation developed based on a novel SSDE prediction equation that used a population's pre-determined percentage difference between volume-weighted computed tomography dose index (CTDIvol) and SSDE with age. American Association of Physicists in Medicine (AAPM RPT 204) method (manual) and segmentation-based SSDE calculators (indoseCT and XXautocalc) were used to assess the proposed software predictions comparatively.
RESULTS: The results of this study show that the automated equation-based calculation of SSDE and the manual and segmentation-based calculation of SSDE are in good agreement for patients. The differences between the automated equation-based calculation of SSDE and the manual and segmentation-based calculation are less than 3%.
CONCLUSION: This study validated an accurate SSDE calculator that allows users to enter key input values and calculate SSDE.
IMPLICATION FOR PRACTICE: The automated equation-based SSDE software (PESSD) seems a promising tool for estimating individualised CT doses during CT scans.
METHODS: A total of 54 patients (8-79 years) with intracranial haemorrhage who underwent both CT examination and six-vessel cerebral angiography were studied over a 2-year period. Cerebral angiography was repeated within 6 weeks if the first angiogram was negative.
RESULTS: Angiography detected vascular lesions in 50% of cases (aneurysm 38.9% and arteriovenous malformation, AVM, 11.1%). In the aneurysm group, angiographic yield was 34.3% whereas in the AVM group, it was 37.9%. Subarachnoid haemorrhage (SAH) combined with other types of haemorrhage (such as intracerebral haemorrhage, ICH) was not significantly correlated with the likelihood of finding a vascular lesion, both aneurysm and AVM (p = 0.157). Age less than 50 years had significant correlation (p = 0.021) in the AVM group as well as in the aneurysm group (p < 0.001). A history of hypertension was associated with both aneurysm (p = 0.039) and AVM (p = 0.008). No patients with deep intracerebral haematoma had vascular lesions. The presence of an intravascular haemorrhage (IVH) had significant correlation with aneurysm (p = 0.008) but not AVM. There was no significant difference in mean age between patients with and without a vascular lesion (p = 0.134).
CONCLUSION: Cerebral angiography is justified in patients with ICH accompanied by pure SAH (p = 0.001). Other factors associated with finding a vascular lesion were a history of hypertension and the presence of IVH. Diagnostic cerebral angiography is indicated for patients with ICH and SAH and IVH with a history of hypertension, regardless of age.