Displaying all 4 publications

Abstract:
Sort:
  1. Zhang W, Li K, Guo J, Ma T, Wang D, Shi S, et al.
    Biotechnol Appl Biochem, 2021 Aug;68(4):896-901.
    PMID: 32822079 DOI: 10.1002/bab.2012
    Researches have proved that increasing level of prostate-specific antigen (PSA) is an indicator for the progression of prostate cancer. The present study was focused to determine the PSA level by using anti-PSA antibody conjugated iron oxide nanoparticles, as the probe immobilized on the gap-fingered electrode sensing surface. The detection limit and sensitivity were found at the level of 1.9 pg/mL on the linear regression curve (y = 1.6939x - 0.5671; R² = 0.9878). A dose-dependent liner range was found from 1.9 until 60 pg/mL. Further, PSA was spiked in human serum and did not affect the interaction of PSA and its antibody. This method of detection quantifies the level of PSA, which helps to diagnose prostate cancer at its earlier stage.
  2. Yang Y, Li J, Yang S, Li X, Fang L, Zhong C, et al.
    BMC Evol. Biol., 2017 01 18;17(1):22.
    PMID: 28100168 DOI: 10.1186/s12862-016-0849-z
    BACKGROUND: A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation.

    RESULTS: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes.

    CONCLUSION: Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level.

  3. Fu W, Wu S, Wang C, Thangalazhy-Gopakumar S, Kothari U, Shi S, et al.
    Bioengineering (Basel), 2023 Oct 14;10(10).
    PMID: 37892926 DOI: 10.3390/bioengineering10101197
    The prehydrolysate from dilute acid pretreatment of lignocellulosic feedstocks often contains inhibitory compounds that can seriously inhibit the subsequent enzymatic and fermentation processes. Acetic acid is one of the most representative toxic compounds. In this research, alkaline deacetylation of corn stover was carried out using sodium carbonate under mild conditions to selectively remove the acetyl groups of the biomass and reduce the toxicity of the prehydrolysate. The deacetylation process was optimized by adjusting factors such as temperature, treatment time, and sodium carbonate concentration. Sodium carbonate solutions (2~6 wt%) at 30~50 °C were used for the deacetylation step, followed by dilute acid pretreatment with 1.5% H2SO4 at 121 °C. Results showed that the acetyl content of the treated corn stover could be reduced up to 87%, while the hemicellulose loss remained low. The optimal deacetylation condition was found to be 40 °C, 6 h, and 4 wt% Na2CO3, resulting in a removal of 80.55% of the acetyl group in corn stover and a hemicellulose loss of 4.09%. The acetic acid concentration in the acid prehydrolysate decreased from 1.38 to 0.34 g/L. The enzymatic hydrolysis of solid corn stover and the whole slurry after pretreatment increased by 17% and 16%, respectively.
  4. He Z, Li X, Yang M, Wang X, Zhong C, Duke NC, et al.
    Natl Sci Rev, 2019 Mar;6(2):275-288.
    PMID: 31258952 DOI: 10.1093/nsr/nwy078
    Allopatric speciation requiring an unbroken period of geographical isolation has been the standard model of neo-Darwinism. While doubts have been repeatedly raised, strict allopatry without any gene flow remains a plausible mechanism in most cases. To rigorously reject strict allopatry, genomic sequences superimposed on the geological records of a well-delineated geographical barrier are necessary. The Strait of Malacca, narrowly connecting the Pacific and Indian Ocean coasts, serves at different times either as a geographical barrier or a conduit of gene flow for coastal/marine species. We surveyed 1700 plants from 29 populations of 5 common mangrove species by large-scale DNA sequencing and added several whole-genome assemblies. Speciation between the two oceans is driven by cycles of isolation and gene flow due to the fluctuations in sea level leading to the opening/closing of the Strait to ocean currents. Because the time required for speciation in mangroves is longer than the isolation phases, speciation in these mangroves has proceeded through many cycles of mixing-isolation-mixing, or MIM, cycles. the MIM mechanism, by relaxing the condition of no gene flow, can promote speciation in many more geographical features than strict allopatry can. Finally, the MIM mechanism of speciation is also efficient, potentially yielding m n (m > 1) species ather n cycles.

    SIGNIFICANCE STATEMENT: Mechanisms of species formation have always been a conundrum. Speciation between populations that are fully geographically isolated, or allopatric speciation, has been the standard solution in the last 50 years. Complete geographical isolation with no possibility of gene flow, however, is often untenable and is inefficient in generating the enormous biodiversity. By studying mangroves on the Indo-Malayan coasts, a global hotspot of coastal biodiversity, we were able to combine genomic data with geographical records on the Indo-Pacific Barrier that separates Pacific and Indian Ocean coasts. We discovered a novel mechanism of speciation that we call mixingisolation-mixing (MIM) cycles. By permitting intermittent gene flow during speciation,MIMcycles can potentially generate species at an exponential rate, thus combining speciation and biodiversity in a unified framework.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links