Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Daha SK, Koirala B, Chapagain D, Lohani P, Acharya S, Sharma P
    Trop Biomed, 2020 Jun 01;37(2):409-420.
    PMID: 33612810
    Novel coronavirus disease, the latest world pandemic is one of the most contagious viral infections to date. There has been a lack of uniformity on recognizing this condition clinically because of poorly understood pathophysiology and clinical nature. Also due to ongoing clinical trials, its management is also varied. This is a systematic review from evidence-based studies until March 1st, 2020, covering an update on its clinical features and management. This study shows the multisystem involvement of COVID-19 with dominant respiratory features followed by the musculoskeletal, gastrointestinal system and others. The clinical features varied from asymptomatic to severe forms. Major causes of fatality were acute respiratory distress syndrome, shock, acute cardiac injury, acute kidney injury, rhabdomyolysis, and arrhythmia. Major modalities of management included supportive, antiviral and antibiotic therapy. There was no direct relationship between the specific treatment and the outcome.
  2. Varghese LL, Bhattacharya A, Sharma P, Apratim A
    BMJ Case Rep, 2020 Jul 20;13(7).
    PMID: 32690568 DOI: 10.1136/bcr-2020-234699
    Chronic apical periodontitis associated with dental pulp necrosis is the main cause of odontogenic extraoral cutaneous sinus openings. These tracts are often initially misdiagnosed unless the treating clinician considers a dental aetiology. This case report of a 19-year-old woman describes the diagnosis and treatment of an extraoral cutaneous sinus tract of odontogenic origin. Non-surgical conservative endodontic therapy was opted as the involved teeth were restorable. One month after the completion of obturation, there was closure of the sinus tract. One year follow-up showed complete resolution of the sinus tract with minimal scar formation.
  3. Soh YSA, Lee YY, Gotoda T, Sharma P, Ho KY, Asian Barrett's Consortium
    Dig Endosc, 2019 Nov;31(6):609-618.
    PMID: 30892742 DOI: 10.1111/den.13402
    Barrett's esophagus (BE), a premalignant condition of the lower esophagus, is increasingly prevalent in Asia. However, endoscopic and histopathological criteria vary widely between studies across Asia, making it challenging to assess comparability between geographical regions. Furthermore, guidelines from various societies worldwide provide differing viewpoints and definitions, leading to diagnostic challenges that affect prognostication of the condition. In this review, the authors discuss the controversies surrounding the diagnosis of BE, particularly in Asia. Differences between guidelines worldwide are summarized with further discussion regarding various classifications of BE used, different definitions of gastroesophageal junction used across geographical regions and the clinical implications of intestinal metaplasia in the setting of BE. Although many guidelines recommend the Seattle protocol as the preferred approach regarding dysplasia surveillance in BE, some limitations exist, leading to poor adherence. Newer technologies, such as acetic acid-enhanced magnification endoscopy, narrow band imaging, Raman spectroscopy, molecular approaches and the use of artificial intelligence appear promising in addressing these problems, but further studies are required before implementation into routine clinical practice. The Asian Barrett's Consortium also outlines its ongoing plans to tackle the challenge of standardizing the diagnosis of BE in Asia.
  4. Kusano C, Singh R, Lee YY, Soh YSA, Sharma P, Ho KY, et al.
    Dig Endosc, 2022 Nov;34(7):1320-1328.
    PMID: 35475586 DOI: 10.1111/den.14342
    Endoscopic diagnosis of gastroesophageal junction and Barrett's esophagus is essential for surveillance and early detection of esophageal adenocarcinoma and esophagogastric junction cancer. Despite its small size, the gastroesophageal junction has many inherent problems, including marked differences in diagnostic methods for Barrett's esophagus in international guidelines. To define Barrett's esophagus, gastroesophageal junction location should be clarified. Although gastric folds and palisade vessels are landmarks for identifying this junction, they are sometimes difficult to observe due to air entry or reflux esophagitis. The possibility of diagnosing a malignancy associated with Barrett's esophagus <1 cm, identified using palisade vessels, should be re-examined. Nontargeted biopsies of Barrett's esophagus are commonly used to detect intestinal metaplasia, dysplasia, and cancer as described in the Seattle protocol. Barrett's esophagus with intestinal metaplasia has a high risk of becoming cancerous. Furthermore, the frequency of cancer in patients with Barrett's esophagus without intestinal metaplasia is high, and the guidelines differ on whether to include the presence of intestinal metaplasia in the diagnosis of Barrett's esophagus. Use of advanced imaging technologies, including narrow-band imaging with magnifying endoscopy and linked color imaging, is reportedly valid for diagnosing Barrett's esophagus. Furthermore, artificial intelligence has facilitated the diagnosis of Barrett's esophagus through its deep learning and image recognition capabilities. However, it is necessary to first use the endoscopic definition of the gastroesophageal junction, which is common in all countries, and then elucidate the characteristics of Barrett's esophagus in each region, for example, length differences in the risk of carcinogenesis with and without intestinal metaplasia.
  5. Puthiyedath R, Kataria S, Payyappallimana U, Mangalath P, Nampoothiri V, Sharma P, et al.
    J Ayurveda Integr Med, 2022;13(1):100326.
    PMID: 32624376 DOI: 10.1016/j.jaim.2020.05.011
    BACKGROUND: Ayurvedic clinical profiling of COVID-19 is a pre-requisite to develop standalone and integrative treatment approaches. At present, Ayurvedic clinicians do not have access to COVID-19 patients in clinical settings. In these circumstances, a preliminary clinical profiling of COVID-19 based on review of modern medical and classical Ayurvedic literature with inputs from Allopathic clinicians treating COVID-19 patients assumes significance.

    OBJECTIVES: This paper aims to develop an Ayurvedic clinical profile of COVID-19 by literature review supported by analysis of clinical data of a cohort of COVID-19 patients.

    METHODS: The typical clinical presentation of COVID-19 was categorized based on a cluster of symptoms with reference to "Interim Clinical Guidance for Management of Patients with confirmed corona virus disease (COVID-19)" released by the US CDC. As the clinical presentation is found to vary widely, research papers reporting clinical symptoms of patient samples from different parts of the world were also reviewed to identify outliers and atypical presentations. Case records of fourteen COVID-19 patients treated at Medanta Hospital, Gurgaon were analyzed to compare symptomatology with data obtained from published literature. Further, a careful correlation was done with the data collected from selected Ayurvedic classical texts and expert views of clinical practitioners to arrive at a preliminary Ayurvedic clinical profile of COVID-19.

    RESULTS: COVID-19 can be understood from the Ayurvedic perspective as vātakapha dominant sannipātajvara of āgantu origin with pittānubandha. The asymptomatic, presymptomatic, mild, moderate, severe and critical stages of COVID-19 with varying clinical presentations have been analysed on the basis of nidāna, doṣa, dūṣya, nidānapañcaka and ṣaṭkriyākāla to present a preliminary clinical profile of the disease.

    CONCLUSION: In this paper, we have demonstrated that a preliminary clinical profiling of COVID-19 from the Ayurvedic perspective is possible through literature review supported by discussions with Allopathic clinicians as well as examination of patient case records. The provisional diagnosis proposed can be further developed with continued review of literature, wider cooperation and teamwork with Allopathic physicians and access to clinical data as well as direct clinical assessment of COVID-19 patients.

  6. Sharma P, Choi K, Krejcar O, Blazek P, Bhatia V, Prakash S
    Sensors (Basel), 2023 Jan 20;23(3).
    PMID: 36772267 DOI: 10.3390/s23031228
    The deployment of optical network infrastructure and development of new network services are growing rapidly for beyond 5/6G networks. However, optical networks are vulnerable to several types of security threats, such as single-point failure, wormhole attacks, and Sybil attacks. Since the uptake of e-commerce and e-services has seen an unprecedented surge in recent years, especially during the COVID-19 pandemic, the security of these transactions is essential. Blockchain is one of the most promising solutions because of its decentralized and distributed ledger technology, and has been employed to protect these transactions against such attacks. However, the security of blockchain relies on the computational complexity of certain mathematical functions, and because of the evolution of quantum computers, its security may be breached in real-time in the near future. Therefore, researchers are focusing on combining quantum key distribution (QKD) with blockchain to enhance blockchain network security. This new technology is known as quantum-secured blockchain. This article describes different attacks in optical networks and provides a solution to protect networks against security attacks by employing quantum-secured blockchain in optical networks. It provides a brief overview of blockchain technology with its security loopholes, and focuses on QKD, which makes blockchain technology more robust against quantum attacks. Next, the article provides a broad view of quantum-secured blockchain technology. It presents the network architecture for the future research and development of secure and trusted optical networks using quantum-secured blockchain. The article also highlights some research challenges and opportunities.
  7. Samad N, Sodunke TE, Abubakar AR, Jahan I, Sharma P, Islam S, et al.
    J Inflamm Res, 2021;14:527-550.
    PMID: 33679136 DOI: 10.2147/JIR.S295377
    The global pandemic from COVID-19 infection has generated significant public health concerns, both health-wise and economically. There is no specific pharmacological antiviral therapeutic option to date available for COVID-19 management. Also, there is an urgent need to discover effective medicines, prevention, and control methods because of the harsh death toll from this novel coronavirus infection. Acute respiratory tract infections, significantly lower respiratory tract infections, and pneumonia are the primary cause of millions of deaths worldwide. The role of micronutrients, including trace elements, boosted the human immune system and was well established. Several vitamins such as vitamin A, B6, B12, C, D, E, and folate; microelement including zinc, iron, selenium, magnesium, and copper; omega-3 fatty acids as eicosapentaenoic acid and docosahexaenoic acid plays essential physiological roles in promoting the immune system. Furthermore, zinc is an indispensable microelement essential for a thorough enzymatic physiological process. It also helps regulate gene-transcription such as DNA replication, RNA transcription, cell division, and cell activation in the human biological system. Subsequently, zinc, together with natural scavenger cells and neutrophils, are also involved in developing cells responsible for regulating nonspecific immunity. The modern food habit often promotes zinc deficiency; as such, quite a few COVID-19 patients presented to hospitals were frequently diagnosed as zinc deficient. Earlier studies documented that zinc deficiency predisposes patients to a viral infection such as herpes simplex, common cold, hepatitis C, severe acute respiratory syndrome coronavirus (SARS-CoV-1), the human immunodeficiency virus (HIV) because of reducing antiviral immunity. This manuscript aimed to discuss the various roles played by zinc in the management of COVID-19 infection.
  8. Gautam A, Sharma P, Ashokhan S, Yaacob JS, Kumar V, Guleria P
    Environ Res, 2023 Jul 15;229:116023.
    PMID: 37121351 DOI: 10.1016/j.envres.2023.116023
    A field study was conducted to investigate the influence of MgO-NPs priming on growth and development of mustard. Priming of mustard seeds before sowing with MgO-NPs at concentration 10, 50, 100, and 150 μg/ml enhanced the vegetative parameters of plants, with considerable increase in leaf area. MgO-NPs exposure increased the photosynthetic pigment accumulation in mustard that led to increase in biomass, carbohydrate content, and the yield in terms of total grain yield. Increased chlorophyll has simultaneously increased the oxidative stress in plants, and hence stimulated their antioxidant potential. A consistent increase was observed in the content of mustard polyphenols and activity of SOD, CAT, and APX on MgO-NPs exposure. MgO-NPs induced oxidative stress further reduced the protein content and bioavailability in mustard. We further, evaluated the influence of MgO-NPs on the quality of mustard harvested seeds. The seeds harvested from nanoprimed mustard possessed increased antioxidant potential and reduced oxidative stress. The carbohydrate and protein accumulation was significantly enhanced in response to nanopriming. Reduced chlorophyll content in seeds obtained from nanoprimed mustard indicated their potential for disease resistance and stability on long term storage. Therefore, the seeds harvested from MgO-NPs primed mustard were biochemically rich and more stable. Therefore, MgO-NPs priming can be potentially used as a novel strategy for growth promotion in plants where leaves are economically important and a strategy to enhance the seed quality under long term storage conditions.
  9. Sharma P, Sethi MIS, Liem A, Bhatti HBS, Pandey V, Nair A
    Telemed Rep, 2023;4(1):271-278.
    PMID: 37753247 DOI: 10.1089/tmr.2023.0040
    INTRODUCTION: Telemedicine use has increased for the past few years, and data security-related issues have also accompanied this. Barriers such as poor digital literacy, unaffordability, and ethical and legal issues have also affected the uptake of digital health. Telemedicine guidelines can help in promoting a suitable environment for wider uptake of telemedicine services by focusing on training, supervision, and monitoring of service providers. This policy review compares the telemedicine guidelines of countries in World Health Organization (WHO) South-East Asia Region (SEAR) as these countries have similar sociocultural backgrounds.

    METHODOLOGY: Latest telemedicine guidelines of the South Asia Region of the WHO were accessed using the official government websites of the countries. The guidelines that were not in the English language were translated into English using Google Translate. The guidelines were analyzed and presented under the following subheadings: (1) Definitions, Purpose, and Tools of Telemedicine; (2) Clinical Aspects of Telemedicine; and (3) Operational and Technical Aspects of Telemedicine.

    RESULTS: Investigating the telemedicine guidelines in the SEAR of the WHO revealed that only 5 out of 11 countries, that is, India, Bangladesh, Thailand, Indonesia and Nepal, have guidelines specifically for telemedicine. Besides Thailand, the other four countries either published (India, Nepal, and Bangladesh) or updated (Indonesia) their telemedicine guidelines after the onset of the COVID-19 pandemic. Guidelines from India and Bangladesh are detailed and robust compared with those from Nepal, Indonesia, and Thailand.

    CONCLUSION: Telemedicine guidelines need to be more robust to improve the uptake of the service. Further research is needed to explore the effectiveness of implementing these guidelines.

  10. Charan J, Kaur RJ, Bhardwaj P, Haque M, Sharma P, Misra S, et al.
    Expert Rev Clin Pharmacol, 2021 Jan;14(1):95-103.
    PMID: 33252992 DOI: 10.1080/17512433.2021.1856655
    Objectives: Remdesivir has shown promise in the management of patients with COVID-19 although recent studies have shown concerns with its effectiveness in practice. Despite this there is a need to document potential adverse drug events (ADEs) to guide future decisions as limited ADE data available before the COVID-19 pandemic. Methods: Interrogation of WHO VigiBase® from 2015 to 2020 coupled with published studies of ADEs in COVID-19 patients. The main outcome measures are the extent of ADEs broken down by factors including age, seriousness, region and organ. Results: A total 1086 ADEs were reported from the 439 individual case reports up to July 19, 2020, in the VigiBase®, reduced to 1004 once duplicates were excluded. Almost all ADEs concerned COVID-19 patients (92.5%), with an appreciable number from the Americas (67.7%). The majority of ADEs were from males > 45 years and were serious (82.5%). An increase in hepatic enzymes (32.1%), renal injury (14.4%), rise in creatinine levels (11.2%), and respiratory failure (6.4%) were the most frequently reported ADEs. Conclusions: Deterioration of liver and kidney function are frequently observed ADEs with remdesivir; consequently, patients should be monitored for these ADEs. The findings are in line with ADEs included in regulatory authority documents.
  11. Gautam A, Sharma P, Ashokhan S, Yaacob JS, Kumar V, Guleria P
    Physiol Mol Biol Plants, 2023 Dec;29(12):1897-1913.
    PMID: 38222280 DOI: 10.1007/s12298-023-01391-9
    Green synthesis of NPs is preferred due to its eco-friendly procedures and non-toxic end products. However, unintentional release of NPs can lead to environmental pollution affecting living organisms including plants. NPs accumulation in soil can affect the agricultural sustainability and crop production. In this context, we report the morphological and biochemical response of spinach nanoprimed with MgO-NPs at concentrations, 10, 50, 100, and 150 µg/ml. Nanopriming reduced the spinach root length by 14-26%, as a result a reduction of 20-74% in the length of spinach shoots was observed. The decreased spinach shoot length inhibited the chlorophyll accumulation by 21-55%, thus reducing the accumulation of carbohydrates and yield by 46 and 49%, respectively. The reduced utilization of the total absorbed light further enhanced ROS generation and oxidative stress by 32%, thus significantly altering their antioxidant system. Additionally, a significant variation in the accumulation of flavonoid pathway downstream metabolites myricitin, rutin, kaempferol-3 glycoside, and quercitin was also revealed on MgO-NPs nanopriming. Additionally, NPs enhanced the protein levels of spinach probably as an osmoprotectant to regulate the oxidative stress. However, increased protein precipitable tannins and enhanced oxidative stress reduced the protein digestibility and solubility. Overall, MgO-NPs mediated oxidative stress negatively affected the growth, development, and yield of spinach in fields in a concentration dependent manner.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-023-01391-9.

  12. Dewo P, Sharma PK, van der Tas HF, van der Houwen EB, Timmer M, Magetsari R, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:21-2.
    PMID: 19024964
    The enormous need of orthopaedic (surgical) implants such as osteosynthesis plates is difficult to be fulfilled in developing countries commonly rely on imported ones. One of the alternatives is utilization of local resources, but only after they have been proven safe to use, to overcome this problem. Surface properties are some of the determining factors of safety for those implants. We have succeeded in developing prototype of osteosynthesis plate and the results indicate that Indonesian-made plates need improvement with regards to the surface quality of physical characterization.
  13. Kaur RJ, Charan J, Dutta S, Sharma P, Bhardwaj P, Sharma P, et al.
    Infect Drug Resist, 2020;13:4427-4438.
    PMID: 33364790 DOI: 10.2147/IDR.S287934
    Background: COVID-19 caused by SARS-CoV-2 virus emerged as an unprecedented challenge to discover effective drugs for its prevention and cure. Hyperinflammation-induced lung damage is one of the poor prognostic indicators causing a higher rate of morbidity and mortality of COVID-19 patients. Favipiravir, an antiviral drug, is being used for COVID-19 treatment, and we currently have limited information regarding its efficacy and safety. Thus, the present study was undertaken to evaluate the adverse drug events (ADEs) reported in the WHO pharmacovigilance database.

    Methods: This study analyzed all suspected ADEs related to favipiravir reported from 2015. The reports were analyzed based on age, gender, and seriousness of ADEs at the System Organ Classification (SOC) level and the individual Preferred Term (PT) level.

    Results: This study is based on 194 ADEs reported from 93 patients. Most frequent ADEs suspected to be caused by the favipiravir included increased hepatic enzymes, nausea and vomiting, tachycardia, and diarrhea. Severe and fatal ADEs occurred more frequently in men and those over the age of 64 years. Blood and lymphatic disorders, cardiac disorders, hepatobiliary disorders, injury poisoning, and procedural complications were more common manifestations of severe ADEs.

    Conclusion: This study revealed that favipiravir appears to be a relatively safe drug. An undiscovered anti-inflammatory activity of favipiravir may explain the improvement in critically ill patients and reduce inflammatory markers. Currently, the data is based on very few patients. A more detailed assessment of the uncommon ADEs needs to be analyzed when more information will be available.

  14. Rahman S, Singh K, Dhingra S, Charan J, Sharma P, Islam S, et al.
    Ther Clin Risk Manag, 2020;16:1007-1022.
    PMID: 33116550 DOI: 10.2147/TCRM.S272908
    COVID-19 pandemic is inducing acute respiratory distress syndrome, multi-organ failure, and eventual death. Respiratory failure is the leading cause of mortality in the elderly population with pre-existing medical conditions. This group is particularly vulnerable to infections due to a declined immune system, comorbidities, geriatric syndrome, and potentially inappropriate polypharmacy. These conditions make the elderly population more susceptible to the harmful effects of medications and the deleterious consequences of infections, including MERS-CoV, SARS-CoV, and SARS-CoV-2. Chronic diseases among elderlies, including respiratory diseases, hypertension, diabetes, and coronary heart diseases, present a significant challenge for healthcare professionals. To comply with the clinical guidelines, the practitioner may prescribe a complex medication regimen that adds up to the burden of pre-existing treatment, potentially inducing adverse drug reactions and leading to harmful side-effects. Consequently, the geriatric population is at increased risk of falls, frailty, and dependence that enhances their susceptibility to morbidity and mortality due to SARS-CoV-2 respiratory syndrome, particularly interstitial pneumonia. The major challenge resides in the detection of infection that may present as atypical manifestations in this age group. Healthy aging can be possible with adequate preventive measures and appropriate medication regimen and follow-up. Adherence to the guidelines and recommendations of WHO, CDC, and other national/regional/international agencies can reduce the risks of SARS-CoV-2 infection. Better training programs are needed to enhance the skill of health care professionals and patient's caregivers. This review explains the public health implications associated with polypharmacy on the geriatric population with pre-existing co-morbidities during the COVID-19 pandemic.
  15. Menon V, Sharma S, Gupta S, Ghosal A, Nadda AK, Jose R, et al.
    Chemosphere, 2023 Mar;317:137848.
    PMID: 36642147 DOI: 10.1016/j.chemosphere.2023.137848
    Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.
  16. Jaiswal V, Ang SP, Ishak A, Joshi A, Chia JE, Kalra K, et al.
    Curr Probl Cardiol, 2023 Aug;48(8):101685.
    PMID: 36931333 DOI: 10.1016/j.cpcardiol.2023.101685
    The safety and clinical outcomes of transcatheter aortic valve replacement (TAVR) compared to surgical aortic valve replacement (SAVR) among patients with solid organ transplants is not well understood. This study aimed to evaluate the clinical outcomes of TAVR and SAVR among patients with a history of solid organ transplantation. We performed a systematic literature search of databases for relevant articles from inception until May 1st, 2022. Unadjusted odds ratios (OR) were pooled using a random-effect model, and a P-value of <0.05 was considered statistically significant. A total of 3240 studies were identified of which 3 studies with a total of 2960 patients were included in the final analysis. For solid organ transplants patients, the odds of in-hospital mortality (OR 0.37, 95% CI 0.20-0.71, P < 0.001), 30-day mortality (OR 0.51, 95% CI 0.35-0.74, P < 0.001), acute kidney injury (OR 0.45, 95% CI 0.35-0.59, P < 0.001), and bleeding (OR 0.35, 95% CI 0.27-0.46, P < 0.001) were significantly lower in patients undergoing TAVR compared to SAVR. In contrast, the odds of pacemaker implantation (OR 2.60, 95% CI 0.36-18.90, P = 0.34), postprocedural stroke (OR 0.36, 95% CI 0.13-1.03, P = 0.06) were similar between both groups of patients. Length of hospital stay was significantly lower in TAVR compared to SAVR patients (SMD -0.82, 95% CI -0.95 to -0.70, P < 0.001). In solid organ transplant patients, TAVR appeared to be a safe procedure with fewer postprocedure complications, shorter length of hospital stay, and lower in hospital mortality compared with SAVR.
  17. Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, et al.
    Bioengineered, 2022 Apr;13(4):10518-10539.
    PMID: 35443858 DOI: 10.1080/21655979.2022.2062526
    Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
  18. Sharma P, Parakh SK, Tsui TH, Bano A, Singh SP, Singh VP, et al.
    Crit Rev Biotechnol, 2023 Aug 29.
    PMID: 37643972 DOI: 10.1080/07388551.2023.2241112
    The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH4)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH4 and 35-45% carbon dioxide (CO2). Methanothrix soehngenii and Methanosaeta concilii are examples of species that convert acetate to CH4 and CO2. Methanobacterium bryantii, Methanobacterium thermoautotrophicum, and Methanobrevibacter arboriphilus are examples of species that produce CH4 from hydrogen and CO2. Methanobacterium formicicum, Methanobrevibacter smithii, and Methanococcus voltae are examples of species that consume formate, hydrogen, and CO2 and produce CH4. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.
  19. Rinne P, Hassan M, Fernandes C, Han E, Hennessy E, Waldman A, et al.
    Proc Natl Acad Sci U S A, 2018 01 16;115(3):E536-E545.
    PMID: 29284747 DOI: 10.1073/pnas.1715617115
    Attention control (or executive control) is a higher cognitive function involved in response selection and inhibition, through close interactions with the motor system. Here, we tested whether influences of attention control are also seen on lower level motor functions of dexterity and strength-by examining relationships between attention control and motor performance in healthy-aged and hemiparetic-stroke subjects (n = 93 and 167, respectively). Subjects undertook simple-tracking, precision-hold, and maximum force-generation tasks, with each hand. Performance across all tasks correlated strongly with attention control (measured as distractor resistance), independently of factors such as baseline performance, hand use, lesion size, mood, fatigue, or whether distraction was tested during motor or nonmotor cognitive tasks. Critically, asymmetric dissociations occurred in all tasks, in that severe motor impairment coexisted with normal (or impaired) attention control whereas normal motor performance was never associated with impaired attention control (below a task-dependent threshold). This implies that dexterity and force generation require intact attention control. Subsequently, we examined how motor and attention-control performance mapped to lesion location and cerebral functional connectivity. One component of motor performance (common to both arms), as well as attention control, correlated with the anatomical and functional integrity of a cingulo-opercular "salience" network. Independently of this, motor performance difference between arms correlated negatively with the integrity of the primary sensorimotor network and corticospinal tract. These results suggest that the salience network, and its attention-control function, are necessary for virtually all volitional motor acts while its damage contributes significantly to the cardinal motor deficits of stroke.
  20. Zainul R, Basem A, J Alfaker M, Sharma P, Kumar A, Al-Bahrani M, et al.
    Heliyon, 2024 Aug 30;10(16):e35171.
    PMID: 39253151 DOI: 10.1016/j.heliyon.2024.e35171
    In this research, aligned with global policies aimed at reducing CO2 emissions from traditional power plants, we developed a holistic energy system utilizing solar, wind, and ocean thermal energy sources, tailored to regions optimal for ocean thermal energy conversion (OTEC). The selected site, characterized by favorable wind and solar conditions close to areas with high OTEC potential, is designed to meet the electricity needs of a coastal community. The system's core components include an Organic Rankine Cycle, turbines, thermoelectric elements, pumps, a heat exchanger, a wind turbine, and a solar collector. A detailed system analysis and thermodynamic evaluation based on thermodynamic principles were carried out using the Engineering Equation Solver (EES) software. Key factors such as wind speed, solar radiation, and collector area were critical in determining system performance. To enhance the system's effectiveness, we conducted a comprehensive comparison of optimization algorithms, incorporating the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and utilizing a Pareto front for value optimization. This approach significantly outperformed other algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Simulated Annealing (SA) in terms of system efficiency and cost-effectiveness. The developed system achieved an exergy efficiency of 14.46 % and a cost rate of $74.98 per hour, demonstrating its suitability for its intended functions. Moreover, exergoenvironmental evaluation was conducted for the proposed plant. The findings revealed that key component HEX has a high exergoenvironmental factor due to their use of hot water, which has zero unit exergoenvironmental impact. Additionally, pumps demonstrated a zero exergoenvironmental impact factor, indicating negligible component-related environmental impacts. Sensitivity analysis further evaluated critical performance parameters, revealing that increases in solar irradiation lead to decreased total system cost rates, while higher turbine temperatures resulted in a remarkable 14.08 % reduction in the system's cost rate. These results underscore the economic viability of operating the system at higher temperatures and strengthen the argument for its adoption from a financial perspective.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links