Displaying all 5 publications

Abstract:
Sort:
  1. Moshiri A, Tekyieh Maroof N, Mohammad Sharifi A
    Iran J Basic Med Sci, 2020 Nov;23(11):1426-1438.
    PMID: 33235700 DOI: 10.22038/ijbms.2020.46228.10707
    Objectives: We investigated the role of various biomaterials on cell viability and in healing of an experimentally induced femoral bone hole model in rats.

    Materials and Methods: Cell viability and cytotoxicity of gelatin (Gel; 50 µg/µl), chitosan (Chi; 20 µg/µl), hydroxyapatite (HA; 50 µg/µl), nanohydroxyapatite (nHA; 10 µg/µl), three-calcium phosphate (TCP; 50 µg/µl) and strontium carbonate (Sr; 10 µg/µl) were evaluated on hADSCs via MTT assay. In vivo femoral drill-bone hole model was produced in rats that were either left untreated or treated with autograft, Gel, Chi, HA, nHA, TCP and Sr, respectively. The animals were euthanized after 30 days. Their bone holes were evaluated by gross-pathology, histopathology, SEM and radiography. Also, their dry matter, bone ash and mineral density were measured.

    Results: Both the Gel and Chi showed cytotoxicity, while nHA had no role on cytotoxicity and cell-viability. All the HA, TCP and Sr significantly improved cell viability when compared to controls (P<0.05). Both the Gel and Chi had no role on osteoconduction and osteoinduction. Compared to HA, nHA showed superior role in increasing new bone formation, mineral density and ash (P<0.05). In contrast to HA and nHA, both the TCP and Sr showed superior morphological, radiographical and biochemical properties on bone healing (P<0.05). TCP and Sr showed the most effective osteoconduction and osteoinduction, respectively. In the Sr group, the most mature type of osteons formed.

    Conclusion: Various biomaterials have different in vivo efficacy during bone regeneration. TCP was found to be the best material for osteoconduction and Sr for osteoinduction.

  2. Aziz A, Ganesan Nathan K, Kamarul T, Mobasheri A, Sharifi A
    Ther Adv Musculoskelet Dis, 2024;16:1759720X241299535.
    PMID: 39600593 DOI: 10.1177/1759720X241299535
    BACKGROUND: Osteoarthritis (OA) is a common degenerative joint disease that poses a significant global healthcare challenge due to its complexity and limited treatment options. Advances in metabolomics have provided insights into OA by identifying dysregulated metabolites and their connection to altered signaling pathways. However, a comprehensive understanding of these biomarkers in OA is still required.

    OBJECTIVES: This systematic review aims to identify metabolomics biomarkers associated with dysregulated signaling pathways in OA, using data from various biological samples, including in vitro models, animal studies, and human research.

    DESIGN: A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

    DATA SOURCES AND METHODS: Data were gathered from literature published between August 2017 and May 2024, using databases such as "PubMed," "Scopus," "Web of Science," and "Google Scholar." Studies were selected based on keywords like "metabolomics," "osteoarthritis," "amino acids," "molecular markers," "biomarkers," "diagnostic markers," "inflammatory cytokines," "molecular signaling," and "signal transduction." The review focused on identifying key metabolites and their roles in OA-related pathways. Limitations include the potential exclusion of studies due to keyword selection and strict inclusion criteria.

    RESULTS: The meta-analysis identified dysregulated metabolites and associated pathways, highlighting a distinct set of related metabolites consistently altered across the studies analyzed. The dysregulated metabolites, including amino acids, lipids, and carbohydrates, were found to play critical roles in inflammation, oxidative stress, and energy metabolism in OA. Metabolites such as alanine, lysine, and proline were frequently linked to pathways involved in inflammation, cartilage degradation, and apoptosis. Key pathways, including nuclear factor kappa B, mitogen-activated protein kinase, Wnt/β-catenin, and mammalian target of rapamycin, were associated with changes in metabolite levels, particularly in proinflammatory lipids and energy-related compounds.

    CONCLUSION: This review reveals a complex interplay between dysregulated metabolites and signaling pathways in OA, offering potential biomarkers and therapeutic targets. Further research is needed to explore the molecular mechanisms driving these changes and their implications for OA treatment.

  3. Mehrabani M, Najafi M, Kamarul T, Mansouri K, Iranpour M, Nematollahi MH, et al.
    Cell Prolif, 2015 Oct;48(5):532-49.
    PMID: 26332145 DOI: 10.1111/cpr.12209
    OBJECTIVES: Both excessive and insufficient angiogenesis are associated with progression of diabetic complications, of which poor angiogenesis is an important feature. Currently, adipose-derived stem cells (ADSCs) are considered to be a promising source to aid therapeutic neovascularization. However, functionality of these cells is impaired by diabetes which can result from a defect in hypoxia-inducible factor-1 (HIF-1), a key mediator involved in neovascularization. In the current study, we sought to explore effectiveness of pharmacological priming with deferoxamine (DFO) as a hypoxia mimetic agent, to restore the compromised angiogenic pathway, with the aid of ADSCs derived from streptozotocin (STZ)-induced type 1 diabetic rats ('diabetic ADSCs').

    MATERIALS AND METHODS: Diabetic ADSCs were treated with DFO and compared to normal and non-treated diabetic ADSCs for expression of HIF-1α, VEGF, FGF-2 and SDF-1, at mRNA and protein levels, using qRT-PCR, western blotting and ELISA assay. Activity of matrix metalloproteinases -2 and -9 were measured using a gelatin zymography assay. Angiogenic potential of conditioned media derived from normal, DFO-treated and non-treated diabetic ADSCs were determined by in vitro (in HUVECs) and in vivo experiments including scratch assay, three-dimensional tube formation testing and surgical wound healing models.

    RESULTS: DFO remarkably enhanced expression of noted genes by mRNA and protein levels and restored activity of matrix metalloproteinases -2 and -9. Compromised angiogenic potential of conditioned medium derived from diabetic ADSCs was restored by DFO both in vitro and in vivo experiments.

    CONCLUSION: DFO preconditioning restored neovascularization potential of ADSCs derived from diabetic rats by affecting the HIF-1α pathway.

  4. Leal Filho W, Salvia AL, Vasconcelos CRP, Anholon R, Rampasso IS, Eustachio JHPP, et al.
    Sustain Sci, 2022;17(6):2615-2630.
    PMID: 36032314 DOI: 10.1007/s11625-022-01204-0
    Social sustainability is a work field characterised by an emphasis on social aspects, e.g. equity, ethics, health, gender balance, or empowerment, within a broader sustainability context. Although the concept seems to be reasonably well established and deemed worthy of pursuing, some obstacles prevent its wide dissemination. Through a bibliometric analysis focusing on the literature on social sustainability at institutions, with a focus on companies, this paper aims to investigate and describe some of the barriers associated with social sustainability implementation. Apart from identifying that sustainability reporting, environmental disclosure and financial performance play a central role in successfully achieving social sustainability, in the context of which gender-related issues seem more tangential, the results indicated some solutions commonly reported for overcoming barriers and obstacles to a company's social sustainability implementation within different sectors. These solutions have to do, among many other factors addressed in this study, with strengthening communication transparency and trust, contributing to awareness, using technology to document and promote social sustainability. Thus, empowering organizations and citizens, recognized as essential factors to social development, and addressing the challenges in a multi-dimensional way.
  5. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al.
    JAMA Oncol, 2019 Dec 01;5(12):1749-1768.
    PMID: 31560378 DOI: 10.1001/jamaoncol.2019.2996
    IMPORTANCE: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data.

    OBJECTIVE: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning.

    EVIDENCE REVIEW: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence.

    FINDINGS: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs).

    CONCLUSIONS AND RELEVANCE: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links