Displaying all 6 publications

Abstract:
Sort:
  1. Yasir HA, Zein SH, Holliday MC, Jabbar KJ, Ahmed U, Jalil AA
    Environ Technol, 2023 Apr 14.
    PMID: 37057364 DOI: 10.1080/09593330.2023.2202829
    AbstractIn this paper, the adsorption of the chlorinated organic compound, 2,4-dichlorophenol, using activated carbon (AC), bagasse fly ash (BFA) and rice husk fly ash (RHFA) in a packed bed column was simulated using Aspen Adsorption software. The purpose of this study was to demonstrate the effectiveness of simulation software for identifying alternative low-cost adsorbents and optimising the adsorption process. The effect of process parameters such as initial concentration, bed height and inlet feed flow rate were evaluated using breakthrough curves. It was shown that the longest breakthrough times were at a higher bed height of 3 m and lower flow rate of 2 m3/hr and concentration had no effect on breakthrough time. After optimisation using response surface methodology, the AC, BFA and RHFA had a breakthrough time of 534 s, 426 s and 209 s, respectively. This shows the potential of BFA as a potential alternative for AC for the adsorption of 2,4-dichlorophenol and shows RHFA to be a relatively poor adsorbent in comparison. The economic evaluation illustrates that the overall cost of wastewater treatment with BFA and RHFA is lower than AC. The cost for the BFA and RHFA adsorbents is only a handling charge, but the cost for using AC adsorbent is £10,603/year. Therefore, the company can produce 17,520 m3/year of fresh water from the adsorbent and save £87,600/year. Therefore, it was concluded that BFA had a slightly weaker adsorption efficiency than AC but was more cost effective, allowing it to be more affordable and increasing its availability.
  2. Ng ZW, Gan HX, Putranto A, Akbar Rhamdhani M, Zein SH, George OA, et al.
    Environ Dev Sustain, 2022 Oct 07.
    PMID: 36246866 DOI: 10.1007/s10668-022-02633-8
    In light of environmental issues, lignocellulosic empty fruit bunch (EFB) biomass is promoted as a carbon-neutral, environmentally friendly, and renewable alternative feedstock. A comprehensive environmental assessment of EFB biorefineries is critical for determining their sustainability in parallel with the bioeconomy policy. Nonetheless, no life cycle assessment (LCA) has been performed on co-producing food and biochemicals (furfural and glucose) derived from EFB biomass. This research is the first to evaluate the environmental performance of the furfural and glucose co-production processes from EFB biomass. Environmental analysis is conducted using a prospective gate-to-gate LCA for four impact categories, including global warming potential (GWP), acidification (ADP), eutrophication (EP), and human toxicity (HT). Aspen Plus is used to simulate the co-production process of furfural and glucose as well as generate mass and energy balances for LCA inventory data usage. The findings suggest that the environmental footprint in respect of GWP, ADP, EP, and HT is 4846.85 kg CO2 equivalent per ton EFB, 7.24 kg SO2 equivalent per ton EFB, 1.52 kg PO4 equivalent per ton EFB, and 2.62E-05 kg 1,4-DB equivalent per ton EFB, respectively. The normalized overall impact scores for GWP, ADP, EP, and HT are 1.16E-10, 2.28E-11, 6.12E-10, and 2.18E-17 years/ton of EFB, respectively. In summary, the proposed integrated plant is not only economically profitable but also environmentally sustainable. In the attempt to enhance the Malaysian economic sector based on the EFB, this study has the potential to serve as an indicator of the environmental sustainability of the palm oil industry.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10668-022-02633-8.

  3. Semilin V, Janaun J, Chung CH, Touhami D, Haywood SK, Chong KP, et al.
    J Hazard Mater, 2021 02 15;404(Pt B):124144.
    PMID: 33212411 DOI: 10.1016/j.jhazmat.2020.124144
    Residual palm oil that goes into the river untreated can become detrimental to the environment. Residual oil discharge during milling process into palm oil mill effluent (POME) is unavoidable. About 1 wt% of residual oil in POME causes major problems to the mills, in terms of environment, wastewater treatment and economy losses. This paper reports the recovery of residual oil from POME by adsorption on polypropylene micro/nanofiber (PP-MNF) and desorption of oil by hands pressing, and oil extraction from the PP-MNF using solvent and supercritical-CO2 extraction techniques. The characterization of the PP-MNF and the quality of oil extracted were analyzed using analytical instruments. The reusability of the PP-MNF was also investigated. The experimental results showed the adsorption capacity of the PP-MNF was 28.65 g of oil/g of PP-MNF on average using refined palm oil, whilst recovery of oil from POME was 10.93 g of oil/g of PP-MNF. The extraction yield of oil from PP-MNF using hand pressing was 89.62%. The extraction of residual oil from the pressed PP-MNF showed comparable yield between solvent and supercritical CO2 techniques. The quality of recovered oil was similar with the quality of the crude oil, and no trace of polypropylene contamination was detected in the oil recovered. The PP-MNF showed no significant physical change after the extraction process. In conclusion, the PP-MNF has great potential to be used commercially in residual oil recovery from POME.
  4. Mohammed MZR, Ng ZW, Putranto A, Kong ZY, Sunarso J, Aziz M, et al.
    PMID: 36643617 DOI: 10.1007/s10098-022-02454-3
    This study aims to propose a new process design, simulation, and techno-economic analysis of an integrated process plant that produces glucose and furfural from palm oil empty fruit bunches (EFB). In this work, an Aspen Plus-based simulation has been established to develop a process flow diagram of co-production of glucose and furfural along with the mass and energy balances. The plant's economics are analyzed by calculating the fixed capital income (FCI), operating costs, and working capital. In contrast, profitability is determined using cumulative cash flow (CCF), net present value (NPV), and internal rate of return (IRR). The findings show that the production capacity of 10 kilotons per year (ktpy) of glucose and 4.96 ktpy of furfural with a purity of 98.21 and 99.54%-weight, respectively, was achieved in this study. The FCI is calculated as United States Dollar (USD) 20.80 million, while the working and operating expenses are calculated as USD 3.74 million and USD 16.93 million, respectively. This project achieves USD 7.65 million NPV with a positive IRR of 14.25% and a return on investment (ROI) of 22.06%. The present work successfully develops a profitable integrated process plant that is established with future upscaling parameters and key cost drivers. The findings provided in this work offer a platform and motivation for future research on integrated plants in the food, environment, and energy nexus with the co-location principle.
  5. Balan WS, Janaun J, Chung CH, Semilin V, Zhu Z, Haywood SK, et al.
    J Hazard Mater, 2021 02 15;404(Pt B):124092.
    PMID: 33091694 DOI: 10.1016/j.jhazmat.2020.124092
    In this study, carbon-silica based acid catalysts derived from rice husks (RH) were successfully synthesised using microwave (MW) technology. The results showed that MW sulphonation produced Sulphur (S) content of 17.2-18.5 times higher than in raw RH. Fourier-transform Infrared Spectroscopy (FTIR) showed peak at 1035 cm-1 which corresponded to O˭S˭O stretching of sulphonic (-SO3H) group. XRD showed sulfonated RH catalysts (SRHCs) have amorphous structure, and through SEM, broadening of the RH voids and also formation of pores is observed. RH600 had the highest surface area of 14.52 m2/g. SRHCs showed high catalytic activity for esterification of oleic acid with methanol with RH600 had the highest initial formation rate (6.33 mmolL-1min-1) and yield (97%). The reusability of the catalyst showed gradually dropped yield of product for every recycle, which might be due to leaching of -SO3H. Finally, esterification of oil recovered from palm oil mill effluent (POME) with methanol achieved a conversion of 87.3% free fatty acids (FFA) into fatty acid methyl esters (FAME).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links