Displaying all 4 publications

Abstract:
Sort:
  1. Jafarlou M, Baradaran B, Shanehbandi D, Saedi TA, Jafarlou V, Karimi P, et al.
    J Biol Regul Homeost Agents, 2016 Jan-Mar;30(1):55-65.
    PMID: 27049076
    A key issue in the treatment of acute myeloid leukemia (AML) is the development of drug resistance to chemotherapeutic agents. Overexpression of myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic protein, is associated with tumor progression and drug resistance in leukemia and several cancers. The purpose of this study was to investigate the effect of specific Mcl-1 small interference RNA (siRNA) on the proliferation and chemosensitivity of U-937 AML cell to etoposide. The siRNA transfection was conducted using Lipofectamine™ 2000. Quantitative real-time RT-PCR (qRT-PCR) and Western blot analysis were employed to measure the expression levels of mRNA and protein, respectively. To evaluate tumor cell growth after siRNA transfection, Trypan blue exclusion assay was conducted. The cytotoxic effects of siRNA and etoposide were determined using MTT assay on their own and in combination. DNA-histone ELISA and annexin-V/FITC assays were performed to study the apoptosis. Mcl-1 siRNA transfection significantly blocked the expression of Mcl-1 mRNA and protein in a time-dependent manner, leading to a strong growth inhibition and enhanced apoptosis (P less than 0.05). Furthermore, pretreatment with Mcl-1 siRNA, synergistically enhanced the cytotoxic and apoptotic effects of etoposide (P less than 0.05). Our results demonstrated that Mcl-1 plays a fundamental role in the survival and resistance of U-937 cells to etoposide. Therefore, Mcl-1 can be considered an attractive target in gene therapy of AML patients and siRNA-mediated silencing of this gene may be a novel strategy in AML treatment.
  2. Jafarlou M, Baradaran B, Shanehbandi D, Saedi TA, Jafarlou V, Ismail P, et al.
    Cell Mol Biol (Noisy-le-grand), 2016 May 30;62(6):44-9.
    PMID: 27262801
    Acute myeloid leukemia (AML) is one of the most frequent types of leukemia which mostly affects adult people. Resistance to therapeutic drugs is considered as a major clinical concern resulting in a weaker response to chemotherapy, disease relapse and decreased survival rate. Survivin, a member of Inhibitor of Apoptosis Proteins (IAPs), is associated with drug resistance and inhibition of apoptotic mechanisms in numerous hematological malignancies. In the present study, we examined the combined effect of etoposide and siRNA-mediated silencing of survivin on U-937 acute myeloid leukemia cells. The AML cells were transfected with survivin specific siRNA and gene knockdown was confirmed by quantitative real time PCR and western blotting. Subsequently, U-937 cells were assessed for response to etoposide treatment and apoptosis rate was measured with flowcytometery. The cytotoxic effects in siRNA-etoposide group were measured and compared to etoposide single therapy group. Survivin siRNA effectively knocked down the mRNA and protein levels of survivin, which led to lower cell proliferation and enhanced apoptosis. Furthermore, combined treatment of etoposide and survivin siRNA synergistically increased the cell toxic effects of etoposide and its ability to induce apoptosis.
  3. Jafarlou M, Baradaran B, Saedi TA, Jafarlou V, Shanehbandi D, Maralani M, et al.
    J Biol Regul Homeost Agents, 2016 Apr-Jun;30(2):315-21.
    PMID: 27358116
    Gene therapy has become a significant issue in science-related news. The principal concept of gene therapy is an experimental technique that uses genes to treat or prevent disease. Although gene therapy was originally conceived as a way to treat life-threatening disorders (inborn defects, cancers) refractory to conventional treatment, it is now considered for many non–life-threatening conditions, such as those adversely impacting a patient’s quality of life. An extensive range of efficacious vectors, delivery techniques, and approaches for developing gene-based interventions for diseases have evolved in the last decade. The lack of suitable treatment has become a rational basis for extending the scope of gene therapy. The aim of this review is to investigate the general methods by which genes are transferred and to give an overview to clinical applications. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. Gene therapy has made substantial progress albeit much slower than was initially predicted. This review also describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various surface disorders and diseases. The conclusion is that, with increased pathobiological understanding and biotechnological improvements, gene therapy will become a standard part of clinical practice.
  4. Jafarlou M, Shanehbandi D, Dehghan P, Mansoori B, Othman F, Baradaran B
    Artif Cells Nanomed Biotechnol, 2018 Dec;46(8):1792-1798.
    PMID: 29113504 DOI: 10.1080/21691401.2017.1392969
    Acute myeloid leukaemia (AML) is a genetically heterogeneous, severe and rapidly progressing disease triggered by blocking granulocyte or monocyte differentiation and maturation. Overexpression of myeloid cell leukaemia-1 (Mcl-1) and Survivin is associated with drug resistance, tumour progression and inhibition of apoptotic mechanisms in leukaemia and several cancers. In the present study, we examined the combined effect of etoposide and dual siRNA-mediated silencing of Mcl-1 and Survivin on U-937 AML cells. The AML cells were co-transfected with Mcl-1 and Survivin-specific siRNAs and genes silencing were confirmed by quantitative real-time PCR and Western blotting. Subsequently, MTT assay was used for the evaluation of cytotoxic effects by dual siRNA and etoposide on their own and in combination. For the studying of apoptosis, DNA-histone ELISA and annexin-V/FITC assays were performed. Co-transfection of Mcl-1 and Survivin siRNA significantly blocked their expression at the mRNA and protein levels, leading to the induction of apoptosis and strong inhibition of growth (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links