Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Gaur R, Shahabuddin S, Ahmad I, Sridewi N
    Nanomaterials (Basel), 2022 Nov 09;12(22).
    PMID: 36432233 DOI: 10.3390/nano12223950
    The present study reported the synthesis of SnS2 nanoparticles by using a thermal decomposition approach using tin chloride and thioacetamide in diphenyl ether at 200 °C over 60 min. SnS2 nanoparticles with novel morphologies were prepared by the use of different alkylamines (namely, octylamine (OCA), dodecylamine (DDA), and oleylamine (OLA)), and their role during the synthesis was explored in detail. The synthesized SnS2 nanostructures were characterized using an array of analytical techniques. The XRD results confirmed the formation of hexagonal SnS2, and the crystallite size varied from 6.1 nm to 19.0 nm and from 2.5 to 8.8 nm for (100) and (011) reflections, respectively. The functional group and thermal analysis confirmed the presence of organics on the surface of nanoparticles. The FE-SEM results revealed nanoparticles, nanoplates, and flakes assembled into flower-like morphologies when dodecylamine, octylamine, and oleylamine were used as capping agents, respectively. The analysis of optical properties showed the variation in the bandgap and the concentration of surface defects on the SnS2 nanoparticles. The role of alkylamine as a capping agent was explored and discussed in detail in this paper and the mechanism for the evolution of different morphologies of SnS2 nanoparticles was also proposed.
  2. Khanam R, Hejazi II, Shahabuddin S, Bhat AR, Athar F
    J Pharm Anal, 2019 Apr;9(2):133-141.
    PMID: 31011470 DOI: 10.1016/j.jpha.2018.12.002
    1, 3, 4-Oxadiazole derivatives (4a-5f) were previously synthesized to investigate their anticancer properties. However, studies relating to their antioxidant potential and signal transducer and activator of transcription (STAT) inhibition have not been performed. We investigated previously synthesized 1, 3, 4-oxadiazole derivatives (4a-5f) for various radical scavenging properties using several in vitro antioxidant assays and also for direct inhibition of STAT3 through molecular docking. The data obtained from various antioxidant assays such as 2, 2,-diphenyl-1-picrylhydrazyl radical (DPPH), nitric oxide, hydrogen peroxide, and superoxide anion radical revealed that among all the derivatives, compound 5e displayed high antioxidant activities than the standard antioxidant L-ascorbic acid. Additionally, the total reduction assay and antioxidant capacity assay further confirmed the antioxidant potential of compound 5e. Furthermore, the molecular docking studies performed for all derivatives along with the standard inhibitor STX-0119 showed that binding energy released in direct binding with the SH2 domain of STAT3 was the highest for compound 5e (-9.91kcal/mol). Through virtual screening, compound 5e was found to exhibit optimum competency in inhibiting STAT3 activity. Compound 5e decreased the activation of STAT3 as observed with Western blot. In brief, compound 5e was identified as a potent antioxidant agent and STAT3 inhibitor and effective agent for cancer treatment.
  3. Bakthavatchalam B, Habib K, Saidur R, Shahabuddin S, Saha BB
    Nanotechnology, 2020 Mar 20;31(23):235402.
    PMID: 32097901 DOI: 10.1088/1361-6528/ab79ab
    Multi-walled carbon nanotubes (MWCNTs) are a contemporary class of nanoparticles that have a prominent thermal, electrical and mechanical properties. There have been numerous studies on the enhancement of thermophysical properties of nanofluids. However, there is only limited research on thermal and stability analysis of MWCNT nanofluids with various kinds of solvents or base fluids, namely propylene glycol, ethanol, ethylene glycol, polyethylene glycol, methanol and water. This paper reports the enhancement of thermophysical properties and stability of MWCNTs with six different base fluids in the presence of sodium dodecyl benzene sulfonate surfactant with a mass concentration of 0.5 wt%. Thermal and dispersion stabilities were determined using a thermogravimetric analyzer (TGA) and Zeta potential, along with a visual inspection method to evaluate the agglomeration or sedimentation of MWCNT nanoparticles over a period of one month. Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy were utilized to identify the molecular components and light absorption of the formulated nanofluids at their maximum wavenumber (4500 cm-1) and wavelength (800 nm). In addition, thermophysical properties such as thermal conductivity, specific heat capacity, viscosity and density with a peak temperature of 200 °C were also experimentally evaluated. The TGA results illustrated that MWCNT/ethylene glycol nanofluid achieved maximum thermal stability at 140 °C and it revealed a maximum zeta potential value of -61.8 mV. Thus, ethylene glycol solution was found to be the best base liquid to homogenize with MWCNTs for acquiring an enhanced thermophysical property and a long-term stability.
  4. Mukheem A, Shahabuddin S, Akbar N, Anwar A, Sarih NM, Sudesh K, et al.
    Appl Microbiol Biotechnol, 2020 Apr;104(7):3121-3131.
    PMID: 32060693 DOI: 10.1007/s00253-020-10416-2
    Antibiotic resistance in pathogenic bacteria is a major health challenge, as Infectious Diseases Society of America (IDSA) has recognized that the past simply drugs susceptible pathogens are now the most dangerous pathogens due to their nonstop growing resistance towards conventional antibiotics. Therefore, due to the emergence of multi-drug resistance, the bacterial infections have become a serious global problem. Acute infections feasibly develop into chronic infections because of many factors; one of them is the failure of effectiveness of antibiotics against superbugs. Modern research of two-dimensional nanoparticles and biopolymers are of great interest to attain the intricate bactericidal activity. In this study, we fabricated an antibacterial nanocomposite consisting of representative two-dimensional molybdenum disulfide (2D MoS2) nanoparticles. Polyhydroxyalkanoate (PHA) and chitosan (Ch) are used to encapsulate MoS2 nanoparticles into their matrix. This study reports the in vitro antibacterial activity and host cytotoxicity of novel PHA-Ch/MoS2 nanocomposites. PHA-Ch/MoS2 nanocomposites were subjected to time-dependent antibacterial assays at various doses to examine their antibacterial activity against multi-drug-resistant Escherichia coli K1 (Malaysian Type Culture Collection 710859) and methicillin-resistant Staphylococcus aureus (MRSA) (Malaysian Type Culture Collection 381123). Furthermore, the cytotoxicity of nanocomposites was examined against spontaneously immortalized human keratinocyte (HaCaT) cell lines. The results indicated significant antibacterial activity (p value
  5. Nodeh HR, Rashidi L, Gabris MA, Gholami Z, Shahabuddin S, Sridewi N
    J Oleo Sci, 2020 Nov 01;69(11):1359-1366.
    PMID: 33055442 DOI: 10.5650/jos.ess20128
    For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and β-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and β-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.
  6. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
  7. Rozi SKM, Shahabuddin S, Manan NSA, Mohamad S, Kamal SAA, Rahman SA
    J Nanosci Nanotechnol, 2018 May 01;18(5):3248-3256.
    PMID: 29442825 DOI: 10.1166/jnn.2018.14699
    The present work highlights the facile synthesis of hydrophobic palm fatty acid functionalized Fe3O4 nanoparticles (MNP-FA) for the efficient removal of oils from the surface of water. An intense hydrophobic layer was introduced on the surface of Fe3O4 nanoparticles functionalized by the palm fatty acid obtained from the hydrolysis of palm olein. Scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Energy dispersive X-ray spectroscopy (EDX) and water contact angle analysis (WCA) measurements were used to characterize the newly fabricated palm fatty acid adorned magnetic Fe3O4 nanoparticles (MNP-FA). The obtained results confirmed the successful synthesis of palm fatty acid-functionalized magnetic nanoparticles. Oil removal tests performed with MNP-FA revealed that this newly prepared material could selectively adsorb lubricating oil up to 3.5 times of the particles' weight while completely repelling water. The main parameters affecting the adsorption of oil i.e., sorption time, mass of sorbent and pH of water were optimized.
  8. Masri A, Abdelnasir S, Anwar A, Iqbal J, Numan A, Jagadish P, et al.
    Appl Microbiol Biotechnol, 2021 Apr;105(8):3315-3325.
    PMID: 33797573 DOI: 10.1007/s00253-021-11221-1
    BACKGROUND: Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii).

    RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells.

    CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications.

    KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.

  9. Rashid B, Anwar A, Shahabuddin S, Mohan G, Saidur R, Aslfattahi N, et al.
    Materials (Basel), 2021 Aug 04;14(16).
    PMID: 34442891 DOI: 10.3390/ma14164370
    The MXenes are a novel family of 2-D materials with promising biomedical activity, however, their anticancer potential is still largely unexplored. In this study, a comparative cytotoxicity investigation of Ti3C2 MXenes with polypropylene glycol (PPG), and polyethylene glycol (PEG) surface-modified 2-D Ti3C2 MXene flakes has been conducted towards normal and cancerous human cell lines. The wet chemical etching method was used to synthesize MXene followed by a simple chemical mixing method for surface modification of Ti3C2 MXene with PPG and PEG molecules. SEM and XRD analyses were performed to examine surface morphology and elemental composition, respectively. FTIR and UV-vis spectroscopy were used to confirm surface modification and light absorption, respectively. The cell lines used to study the cytotoxicity of MXene and surface-modified MXenes in this study were normal (HaCaT and MCF-10A) and cancerous (MCF-7 and A375) cells. These cell lines were also used as controls (without exposure to study material and irradiation) to measure their baseline cell viability under the same lab environment. The surface-modified MXenes exhibited a sharp reduction in cell viability towards both normal (HaCaT and MCF-10A) and cancerous (MCF-7 and A375) cells but cytotoxicity was more pronounced towards cancerous cell lines. This may be due to the difference in cell metabolism and the occurrence of high pre-existing levels of reactive oxygen species (ROS) within cancerous cells. The highest toxicity towards both normal and cancerous cell lines was observed with PEGylated MXenes followed by PPGylated and bare MXenes. The normal cell's viability was barely above 70% threshold with 250 mg/L PEGylated MXene concentration whereas PPGylated and bare MXene were less toxic towards normal cells, even at 500 mg/L concentration. Moreover, the toxicity was found to be directly related to the type of cell lines. In general, the HaCaT cell line exhibited the lowest toxicity while toxicity was highest in the case of the A375 cell line. The photothermal studies revealed high photo response for PEGylated MXene followed by PPGylated and bare MXenes. However, the PPGylated MXene's lower cytotoxicity towards normal cells while comparable toxicity towards malignant cells as compared to PEGylated MXenes makes the former a relatively safe and effective anticancer agent.
  10. Abdelnasir S, Mungroo MR, Shahabuddin S, Siddiqui R, Khan NA, Anwar A
    ACS Chem Neurosci, 2021 Oct 06;12(19):3579-3587.
    PMID: 34545742 DOI: 10.1021/acschemneuro.1c00179
    Free-living amoebae include Acanthamoeba castellanii and Naegleria fowleri that are opportunistic protozoa responsible for life-threatening central nervous system infections with mortality rates over 90%. The rising number of cases and high mortality rates are indicative of the critical unmet need for the development of efficient drugs in order to avert future deaths. In this study, we assess the anti-amoebic capacity of a conducting polymer nanocomposite comprising polyaniline (PANI) and hexagonal boron nitride (hBN) against A. castellanii and N. fowleri. We observed significant amoebicidal and cysticidal effects using 100 μg/mL PANI/hBN (P < 0.05). Further, the nanocomposite demonstrated negligible cytotoxicity toward HaCaT and primary human corneal epithelial cells (pHCECs). In evaluating the mode of inhibition of A. castellanii due to treatment with PANI/hBN, increased intracellular reactive oxygen species (ROS) was measured and scanning microscopy visualized the formation of pores in the amoebae. Overall, this study is suggestive of the potential of the PANI/hBN nanocomposite as a promising therapy for amoeba infections.
  11. Mukheem A, Muthoosamy K, Manickam S, Sudesh K, Shahabuddin S, Saidur R, et al.
    Materials (Basel), 2018 Sep 10;11(9).
    PMID: 30201852 DOI: 10.3390/ma11091673
    Many wounds are unresponsive to currently available treatment techniques and therefore there is an immense need to explore suitable materials, including biomaterials, which could be considered as the crucial factor to accelerate the healing cascade. In this study, we fabricated polyhydroxyalkanoate-based antibacterial mats via an electrospinning technique. One-pot green synthesized graphene-decorated silver nanoparticles (GAg) were incorporated into the fibres of poly-3 hydroxybutarate-co-12 mol.% hydroxyhexanoate (P3HB-co-12 mol.% HHx), a co-polymer of the polyhydroxyalkanoate (PHA) family which is highly biocompatible, biodegradable, and flexible in nature. The synthesized PHA/GAg biomaterial has been characterized by field emission scanning electron microscopy (FESEM), elemental mapping, thermogravimetric analysis (TGA), UV-visible spectroscopy (UV-vis), and Fourier transform infrared spectroscopy (FTIR). An in vitro antibacterial analysis was performed to investigate the efficacy of PHA/GAg against gram-positive Staphylococcus aureus (S. aureus) strain 12,600 ATCC and gram-negative Escherichia coli (E. coli) strain 8739 ATCC. The results indicated that the PHA/GAg demonstrated significant reduction of S. aureus and E. coli as compared to bare PHA or PHA- reduced graphene oxide (rGO) in 2 h of time. The p value (p < 0.05) was obtained by using a two-sample t-test distribution.
  12. Anwar A, Chi Fung L, Anwar A, Jagadish P, Numan A, Khalid M, et al.
    Pathogens, 2019 Nov 22;8(4).
    PMID: 31766722 DOI: 10.3390/pathogens8040260
    T4 genotype Acanthamoeba are opportunistic pathogens that cause two types of infections, including vision-threatening Acanthamoeba keratitis (AK) and a fatal brain infection known as granulomatous amoebic encephalitis (GAE). Due to the existence of ineffective treatments against Acanthamoeba, it has become a potential threat to all contact lens users and immunocompromised patients. Metal nanoparticles have been proven to have various antimicrobial properties against bacteria, fungi, and parasites. Previously, different types of cobalt nanoparticles showed some promise as anti-acanthamoebic agents. In this study, the objectives were to synthesize and characterize the size, morphology, and crystalline structure of cobalt phosphate nanoparticles, as well as to determine the effects of different sizes of cobalt metal-based nanoparticles against A. castellanii. Cobalt phosphate octahydrate (CHP), Co3(PO4)2•8H2O, was synthesized by ultrasonication using a horn sonicator, then three different sizes of cobalt phosphates Co3(PO4)2 were produced through calcination of Co3(PO4)2•8H2O at 200 °C, 400 °C and 600 °C (CP2, CP4, CP6). These three types of cobalt phosphate nanoparticles were characterized using a field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. Next, the synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. The overall results showed that 1.30 ± 0.70 µm of CHP microflakes demonstrated the best anti-acanthemoebic effects at 100 µg/mL, followed by 612.50 ± 165.94 nm large CP6 nanograins. However, amongst the three tested cobalt phosphates, Co3(PO4)2, the smaller nanoparticles had stronger antiamoebic effects against A. castellanii. During cell cytotoxicity analysis, CHP exhibited only 15% cytotoxicity against HeLa cells, whereas CP6 caused 46% (the highest) cell cytotoxicity at the highest concentration, respectively. Moreover, the composition and morphology of nanoparticles is suggested to be important in determining their anti-acathamoebic effects. However, the molecular mechanisms of cobalt phosphate nanoparticles are still unidentified. Nevertheless, the results suggested that cobalt phosphate nanoparticles hold potential for development of nanodrugs against Acanthamoeba.
  13. Khanam R, Kumar R, Hejazi II, Shahabuddin S, Meena R, Jayant V, et al.
    Apoptosis, 2018 02;23(2):113-131.
    PMID: 29349707 DOI: 10.1007/s10495-018-1439-x
    Piperazine scaffolds or 2-azetidinone pharmacophores have been reported to show anti-cancer activities and apoptosis induction in different types of cancer cells. However, the mechanistic studies involve in induction of apoptosis addressing these two moieties for human cervical cancer cells remain uncertain. The present study emphasizes on the anti-proliferating properties and mechanism involved in induction of apoptosis for these structurally related azoles derivatives in HeLa cancer cells. 1-Phenylpiperazine clubbed with 2-azetidione derivatives (5a-5h) were synthesized, characterized using various spectroscopic techniques and evaluated for their in-vitro anti-proliferative activities and induction of apoptosis. Further, we also evaluated oxidative stress generated by these synthetic derivatives (5a-5h). Cell viability studies revealed that among all, the compound N-(3-chloro-2-(3-nitrophenyl)-4-oxoazetidin-1-yl)-2-(4-phenylpiperazin-1-yl) acetamide 5e remarkably inhibited the growth of HeLa cells in a concentration dependent manner having IC50 value of 29.44 ± 1.46 µg/ml. Morphological changes, colonies suppression and inhibition of migration clearly showed the antineoplasicity in HeLa cells treated with 5e. Simultaneously, phosphatidylserine externalization, DNA fragmentation and cell-cycle arrest showed ongoing apoptosis in the HeLa cancer cells induced by compound 5e in concentration dependent manner. Additionally, generation of intracellular ROS along with the decrease in mitochondrial membrane potential supported that compound 5e caused oxidative stress resulting in apoptosis through mitochondria mediated pathway. Elevation in the level of cytochrome c and upregulation in expression of caspase-3 clearly indicated the involvement of the intrinsic pathway of programmed cell death. In brief; compound 5e could serve as a promising lead for the development of an effective antitumor agent.
  14. Abdelnasir S, Mungroo MR, Chew J, Siddiqui R, Khan NA, Ahmad I, et al.
    ACS Omega, 2023 Mar 07;8(9):8237-8247.
    PMID: 36910978 DOI: 10.1021/acsomega.2c06050
    Primary amoebic meningoencephalitis and granulomatous amoebic encephalitis are distressing infections of the central nervous system caused by brain-eating amoebae, namely, Naegleria fowleri and Acanthamoeba spp., respectively, and present mortality rates of over 90%. No single drug has been approved for use against these infections, and current therapy is met with an array of obstacles including high toxicity and limited specificity. Thus, the development of alternative effective chemotherapeutic agents for the management of infections due to brain-eating amoebae is a crucial requirement to avert future mortalities. In this paper, we synthesized a conducting polymer-based nanocomposite entailing polyaniline (PANI) and molybdenum disulfide (MoS2) and explored its anti-trophozoite and anti-cyst potentials against Acanthamoeba castellanii and Naegleria fowleri. The intracellular generation of reactive oxygen species (ROS) and ultrastructural appearances of amoeba were also evaluated with treatment. Throughout, treatment with the 1:2 and 1:5 ratios of PANI/MoS2 at 100 μg/mL demonstrated significant anti-amoebic effects toward A. castellanii as well as N. fowleri, appraised to be ROS mediated and effectuate physical alterations to amoeba morphology. Further, cytocompatibility toward human keratinocyte skin cells (HaCaT) and primary human corneal epithelial cells (pHCEC) was noted. For the first time, polymer-based nanocomposites such as PANI/MoS2 are reported in this study as appealing options in the drug discovery for brain-eating amoebae infections.
  15. Gabris MA, Jume BH, Rezaali M, Shahabuddin S, Nodeh HR, Saidur R
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27122-27132.
    PMID: 30022389 DOI: 10.1007/s11356-018-2749-9
    This work presents the synthesis of the novel silica-cyanopropyl functionalized magnetic graphene oxide (MGO/SiO2-CN) hybrid nanomaterial derived by sol-gel method as a cheap efficient magnetic sorbent for the removal of extremely hazardous lead ions from aqueous media. The integration of the magnetic property, the carbon substrate, and the nitrile (-C ≡ N) containing organic grafted silica matrix promoted the adsorption capability against lead ions along with its simple synthesis recovery and low cost. The prepared nanocomposite was comprehensively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Adsorption of lead was found to be pH dependent because of the charged nature of both analyte and adsorbent surface. Adsorption experiments were conducted under the optimum conditions, and the obtained experimental data from atomic absorption spectroscopy were analyzed using the popular isothermal models namely Langmuir, Freundlich, and Dubinin-Radushkevich isotherms as well as kinetically studied and evaluated for adsorption standard free energy (E). The experimental results have demonstrated the enhanced adsorption capability of the proposed sorbent nanocomposite for lead ion removal with the maximum adsorption capacity of 111.11 mg/g at pH 5.0. The proposed mechanism of lead adsorption was mainly attributed to the complexation of lead positive ions with the grafted -C ≡ N bond. The synergistic effect of the combination of three components (i.e., the magnetic graphene oxide matrix, the triple bond containing organic moiety, and the inorganic porous silica framework) excelled the adsorption capability and proved to be a good candidate as adsorbent for the removal of lead ions.
  16. Sambasevam KP, Sateria SF, Baharin SNA, Azman NJ, Ahmad Wakid S, Shahabuddin S
    Int J Biol Macromol, 2023 Mar 18;238:124079.
    PMID: 36934823 DOI: 10.1016/j.ijbiomac.2023.124079
    In this work, chitin (Ch) was chemically extracted from wild mushrooms and then grafted to polyaniline (PANI) to form a composite (Ch-g-PANI) to detect ammonia (NH3) gas. The Ch-g-PANI was comprehensively characterized using Scanning electron microscopy (SEM), elemental mapping, thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectroscopy. The NH3 gas detection optimization was evaluated using Box-Behnken Design. Typically, physical factors such as (A)film layer, (B)loading %, and (C)contact time were investigated and validated through the analysis of variance (ANOVA). The ANOVA revealed that dual interactions between (A)film layer - (C)contact time, and (B)loading % - (C)contact time are among the significant factors. By considering these significant interactions, the highest sensitivity was obtained when (A)film layer (3), (B)loading (5 %), and (C)contact time (10 min) in NH3 gas detection. Then, the optimized Ch-g-PANI was tested in the linear range of NH3 gas concentration from 10 to 50 ppm, which resulted in a linear calibration curve with R2 = 0.994 and a detection limit of 15.03 ppm. Sensor performances showed that Ch-g-PANI films possess high selectivity for NH3 gas among the common interfering gases and the film can be reused for up to 6 cycles. Therefore, the new mushroom-sourced Ch-g-PANI is an inexpensive and economical sensor in the NH3 gas sensor field.
  17. Hussein OA, Habib K, Saidur R, Muhsan AS, Shahabuddin S, Alawi OA
    RSC Adv, 2019 Nov 25;9(66):38576-38589.
    PMID: 35540235 DOI: 10.1039/c9ra07811h
    Covalent functionalization (CF-GNPs) and non-covalent functionalization (NCF-GNPs) approaches were applied to prepare graphene nanoplatelets (GNPs). The impact of using four surfactants (SDS, CTAB, Tween-80, and Triton X-100) was studied with four test times (15, 30, 60, and 90 min) and four weight concentrations. The stable thermal conductivity and viscosity were measured as a function of temperature. Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) and Raman spectroscopy verified the fundamental efficient and stable CF. Several techniques, such as dispersion of particle size, FESEM, FETEM, EDX, zeta potential, and UV-vis spectrophotometry, were employed to characterize both the dispersion stability and morphology of functionalized materials. At ultrasonic test time, the highest stability of nanofluids was achieved at 60 min. As a result, the thermal conductivity displayed by CF-GNPs was higher than NCF-GNPs and distilled water. In conclusion, the improvement in thermal conductivity and stability displayed by CF-GNPs was higher than those of NCF-GNPs, while the lowest viscosity was 8% higher than distilled water, and the best thermal conductivity improvement was recorded at 29.2%.
  18. Najarzadekan H, Kamboh MA, Sereshti H, Ahmad I, Sridewi N, Shahabuddin S, et al.
    Polymers (Basel), 2022 Sep 08;14(18).
    PMID: 36145908 DOI: 10.3390/polym14183760
    Chlorobenzenes (CBs) are persistent and potentially have a carcinogenic effect on mammals. Thus, the determination of CBs is essential for human health. Hence, in this study, novel polyurethane−polysulfone/calix[4]arene (PU-PSU/calix[4]arene) nanofibers were synthesized using an electrospinning approach over in-situ coating on a stainless-steel wire. The nanosorbent was comprehensively characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The SEM analysis depicted the nanofiber’s unique morphology and size distribution in the range of 50−200 nm. To determine the levels of 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,3,4-tetrachlorobenzene in water samples, freshly prepared nanosorbent was employed using headspace-solid phase microextraction (HS-SPME) in combination with gas chromatography micro electron capture detector (GC-µECD). Other calixarenes, such as sulfonated calix[4]arene, p-tert-calixarene, and calix[6]arene were also examined, and among the fabricated sorbents, the PU−PSU/calix[4]arene showed the highest efficiency. The key variables of the procedure, including ionic strength, extraction temperature, extraction duration, and desorption conditions were examined. Under optimal conditions, the LOD (0.1−1.0 pg mL−1), the LDR (0.4−1000 pg mL−1), and the R2 > 0.990 were determined. Additionally, the repeatability from fiber to fiber and the intra-day and inter-day reproducibility were determined to be 1.4−6.0, 4.7−10.1, and 0.9−9.7%, respectively. The nanofiber adsorption capacity was found to be 670−720 pg/g for CBs at an initial concentration of 400 pg mL−1. A satisfactory recovery of 80−106% was attained when the suggested method’s application for detecting chlorobenzenes (CBs) in tap water, river water, sewage water, and industrial water was assessed.
  19. Najarzadekan H, Sereshti H, Ahmad I, Shahabuddin S, Rashidi Nodeh H, Sridewi N
    Polymers (Basel), 2022 Sep 05;14(17).
    PMID: 36080757 DOI: 10.3390/polym14173682
    A new solid phase micro extraction (SPME) fiber coating composed of electrospun polyethylene terephthalate (PET) nanofibrous mat doped with superhydrophobic nanosilica (SiO2) was coated on a stainless-steel wire without the need of a binder. The coating was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR) techniques and it was used in headspace-SPME of 16 organochlorine pesticides in water samples prior to gass chromatography micro electron capture detector (GC-µECD) analysis. The effects of main factors such as adsorption composition, electrospinning flow rate, salt concentration, extraction temperature, extraction time, and desorption conditions were investigated. Under the optimum conditions, the linear dynamic range (8−1000 ng L−1, R2 > 0.9907), limits of detection (3−80 ng L−1), limits of quantification (8−200 ng L−1), intra-day and inter-day precisions (at 400 and 1000 ng L−1, 1.7−13.8%), and fiber-to-fiber reproducibility (2.4−13.4%) were evaluated. The analysis of spiked tap, sewage, industrial, and mineral water samples for the determination of the analytes resulted in satisfactory relative recoveries (78−120%).
  20. Khanam R, Kumar R, Hejazi II, Shahabuddin S, Meena R, Rajamani P, et al.
    J Cell Biochem, 2019 Feb;120(2):1651-1666.
    PMID: 30206975 DOI: 10.1002/jcb.27472
    N-benzhydrylpiperazine and 1,3,4-oxadiazoles are pharmacologically active scaffolds which exhibits significant inhibitory growth effects against various cancer cells, however, antiproliferation effects and the underlying mechanism for inducing apoptosis for aforementioned scaffolds addressing HeLa cancer cells remains uncertain. In this study, N-benzhydrylpiperazine clubbed with 1,3,4-oxadiazoles (4a-4h) were synthesized, subsequently characterized using high resolution spectroscopic techniques and eventually evaluated for their antiproliferation potential by inducing apoptosis in HeLa cancer cells. The MTT assay screening results revealed that among all, compound 4d ( N-benzhydryl-4-((5-(4-aminophenyl)-1,3,4-oxadiazol-2-yl)methyl)piperazine) in particular, exhibited IC 50 value of 28.13 ± 0.21 μg/mL and significantly inhibited the proliferation of HeLa cancer cells in concentration-dependent manner. The in vitro anticancer assays for treated HeLa cells resulted in alterations in the cell morphology, reduction in colony formation, and inhibition of cell migration in concentration-dependent treatment. Furthermore, G2/M phase arrest, variations in the nuclear morphology, degradation of chromosomal DNA confirmed the ongoing apoptosis in treated HeLa cells. Increase in the expression of cytochrome C and caspase-3 confirmed the involvement of intrinsic mitochondrial pathway regulating the cell death. Also, elevation in reactive oxygen species level and loss of mitochondrial membrane potential signified that compound 4d induced apoptosis in HeLa cells by generating the oxidative stress. Therefore, compound 4d may act as a potent chemotherapeutic agent against human cervical cancer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links