Displaying all 4 publications

Abstract:
Sort:
  1. AlDahoul N, Essam Y, Kumar P, Ahmed AN, Sherif M, Sefelnasr A, et al.
    Sci Rep, 2021 04 09;11(1):7826.
    PMID: 33837236 DOI: 10.1038/s41598-021-87415-4
    Rivers carry suspended sediments along with their flow. These sediments deposit at different places depending on the discharge and course of the river. However, the deposition of these sediments impacts environmental health, agricultural activities, and portable water sources. Deposition of suspended sediments reduces the flow area, thus affecting the movement of aquatic lives and ultimately leading to the change of river course. Thus, the data of suspended sediments and their variation is crucial information for various authorities. Various authorities require the forecasted data of suspended sediments in the river to operate various hydraulic structures properly. Usually, the prediction of suspended sediment concentration (SSC) is challenging due to various factors, including site-related data, site-related modelling, lack of multiple observed factors used for prediction, and pattern complexity.Therefore, to address previous problems, this study proposes a Long Short Term Memory model to predict suspended sediments in Malaysia's Johor River utilizing only one observed factor, including discharge data. The data was collected for the period of 1988-1998. Four different models were tested, in this study, for the prediction of suspended sediments, which are: ElasticNet Linear Regression (L.R.), Multi-Layer Perceptron (MLP) neural network, Extreme Gradient Boosting, and Long Short-Term Memory. Predictions were analysed based on four different scenarios such as daily, weekly, 10-daily, and monthly. Performance evaluation stated that Long Short-Term Memory outperformed other models with the regression values of 92.01%, 96.56%, 96.71%, and 99.45% daily, weekly, 10-days, and monthly scenarios, respectively.
  2. Hanoon MS, Ahmed AN, Zaini N, Razzaq A, Kumar P, Sherif M, et al.
    Sci Rep, 2021 09 23;11(1):18935.
    PMID: 34556676 DOI: 10.1038/s41598-021-96872-w
    Accurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Linear regression (LR) and different artificial neural network (ANN) architectures (multi-layered perceptron, radial basis function) for prediction of such as air temperature (T) and relative humidity (Rh). Daily data over 24 years for Kula Terengganu station were obtained from the Malaysia Meteorological Department. Results showed that MLP-NN performs well among the others in predicting daily T and Rh with R of 0.7132 and 0.633, respectively. However, in monthly prediction T also MLP-NN model provided closer standards deviation to actual value and can be used to predict monthly T with R 0.8462. Whereas in prediction monthly Rh, the RBF-NN model's efficiency was higher than other models with R of 0.7113. To validate the performance of the trained both artificial neural network (ANN) architectures MLP-NN and RBF-NN, both were applied to an unseen data set from observation data in the region. The results indicated that on either architecture of ANN, there is good potential to predict daily and monthly T and Rh values with an acceptable range of accuracy.
  3. Kumar P, Lai SH, Mohd NS, Kamal MR, Afan HA, Ahmed AN, et al.
    PLoS One, 2020;15(9):e0239509.
    PMID: 32986717 DOI: 10.1371/journal.pone.0239509
    In the past few decades, there has been a rapid growth in the concentration of nitrogenous compounds such as nitrate-nitrogen and ammonia-nitrogen in rivers, primarily due to increasing agricultural and industrial activities. These nitrogenous compounds are mainly responsible for eutrophication when present in river water, and for 'blue baby syndrome' when present in drinking water. High concentrations of these compounds in rivers may eventually lead to the closure of treatment plants. This study presents a training and a selection approach to develop an optimum artificial neural network model for predicting monthly average nitrate-N and monthly average ammonia-N. Several studies have predicted these compounds, but most of the proposed procedures do not involve testing various model architectures in order to achieve the optimum predicting model. Additionally, none of the models have been trained for hydrological conditions such as the case of Malaysia. This study presents models trained on the hydrological data from 1981 to 2017 for the Langat River in Selangor, Malaysia. The model architectures used for training are General Regression Neural Network (GRNN), Multilayer Neural Network and Radial Basis Function Neural Network (RBFNN). These models were trained for various combinations of internal parameters, input variables and model architectures. Post-training, the optimum performing model was selected based on the regression and error values and plot of predicted versus observed values. Optimum models provide promising results with a minimum overall regression value of 0.92.
  4. Afan HA, Allawi MF, El-Shafie A, Yaseen ZM, Ahmed AN, Malek MA, et al.
    Sci Rep, 2020 03 13;10(1):4684.
    PMID: 32170078 DOI: 10.1038/s41598-020-61355-x
    In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links