Displaying all 3 publications

Abstract:
Sort:
  1. Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH, Schneider CJ
    Proc Biol Sci, 2001 Jul 7;268(1474):1381-6.
    PMID: 11429138
    We present evidence that a relatively widespread and common bat from South East Asia comprises two morphologically cryptic but acoustically divergent species. A population of the bicoloured leaf-nosed bat (Hipposideros bicolor) from Peninsular Malaysia exhibits a bimodal distribution of echolocation call frequencies, with peaks in the frequency of maximum energy at ca. 131 and 142 kHz. The two phonic types are genetically distinct, with a cytochrome b sequence divergence of just under 7%. We consider the mechanisms by which acoustic divergence in these species might arise. Differences in call frequency are not likely to effect resource partitioning by detectable prey size or functional range. However, ecological segregation may be achieved by differences in microhabitat use; the 131kHz H. bicolor is characterized by significantly longer forearms, lower wing loading, a lower aspect ratio and a more rounded wingtip, features that are associated with greater manoeuvrability in flight that may enable it to forage in more cluttered environments relative to the 142 kHz phonic type. We suggest that acoustic divergence in these species is a consequence of social selection for a clear communication channel, which is mediated by the close link between the acoustic signal and receptor systems imposed by the highly specialized nature of the hipposiderid and rhinolophid echolocation system.
  2. Campbell P, Schneider CJ, Adnan AM, Zubaid A, Kunz TH
    Mol Ecol, 2006 Jan;15(1):29-47.
    PMID: 16367828
    The extent to which response to environmental change is mediated by species-specific ecology is an important aspect of the population histories of tropical taxa. During the Pleistocene glacial cycles and associated sea level fluctuations, the Sunda region in Southeast Asia experienced concurrent changes in landmass area and the ratio of forest to open habitat, providing an ideal setting to test the expectation that habitat associations played an important role in determining species' response to the opportunity for geographic expansion. We used mitochondrial control region sequences and six microsatellite loci to compare the phylogeographic structure and demographic histories of four broadly sympatric species of Old World fruit bats in the genus, Cynopterus. Two forest-associated species and two open-habitat generalists were sampled along a latitudinal transect in Singapore, peninsular Malaysia, and southern Thailand. Contrary to expectations based on habitat associations, the geographic scale of population structure was not concordant across ecologically similar species. We found evidence for long and relatively stable demographic history in one forest and one open-habitat species, and inferred non-coincident demographic expansions in the second forest and open-habitat species. Thus, while these results indicate that Pleistocene climate change did not have a single effect on population structure across species, a correlation between habitat association and response to environmental change was supported in only two of four species. We conclude that interactions between multiple factors, including historical and contemporary environmental change, species-specific ecology and interspecific interactions, have shaped the recent evolutionary histories of Cynopterus fruit bats in Southeast Asia.
  3. Campbell P, Schneider CJ, Adnan AM, Zubaid A, Kunz TH
    Mol Phylogenet Evol, 2004 Dec;33(3):764-81.
    PMID: 15522802
    Taxonomic relationships within the Old World fruit bat genus, Cynopterus, have been equivocal for the better part of a century. While nomenclature has been revised multiple times on the basis of phenotypic characters, evolutionary relationships among taxa representing the entire geographic range of the genus have not been determined. We used mitochondrial DNA sequence data to infer phylogenetic relationships among the three most broadly distributed members of the genus: C. brachyotis, C. horsfieldi, and C. sphinx, and to assess whether C. brachyotis represents a single widespread species, or a complex of distinct lineages. Results clearly indicate that C. brachyotis is a complex of lineages. C. sphinx and C. horsfieldi haplotypes formed monophyletic groups nested within the C. brachyotis species complex. We identified six divergent mitochondrial lineages that are currently referred to C. brachyotis. Lineages from India, Myanmar, Sulawesi, and the Philippines are geographically well-defined, while in Malaysia two lineages, designated Sunda and Forest, are broadly sympatric and may be ecologically distinct. Demographic analyses of the Sunda and Forest lineages suggest strikingly different population histories, including a recent and rapid range expansion in the Sunda lineage, possibly associated with changes in sea levels during the Pleistocene. The resolution of the taxonomic issues raised in this study awaits combined analysis of morphometric characters and molecular data. However, since both the Indian and Malaysian Forest C. brachyotis lineages are apparently ecologically restricted to increasingly fragmented forest habitat, we suggest that reevaluation of the conservation status of populations in these regions should be an immediate goal.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links