Displaying all 2 publications

Abstract:
Sort:
  1. Nuruzzaman M, Sharoni AM, Satoh K, Karim MR, Harikrishna JA, Shimizu T, et al.
    Front Plant Sci, 2015;6:676.
    PMID: 26442000 DOI: 10.3389/fpls.2015.00676
    Expression levels of the NAC gene family were studied in rice infected with Rice dwarf virus (RDV), Rice black-streaked dwarf virus (RBSDV), Rice grassy stunt virus (RGSV), Rice ragged stunt virus (RRSV), and Rice transitory yellowing virus (RTYV). Microarray analysis showed that 75 (68%) OsNAC genes were differentially regulated during infection with RDV, RBSDV, RGSV, and RRSV compared with the control. The number of OsNAC genes up-regulated was highest during RGSV infection, while the lowest number was found during RTYV infection. These phenomena correlate with the severity of the syndromes induced by the virus infections. Most of the genes in the NAC subgroups NAC22, SND, ONAC2, ANAC34, and ONAC3 were down-regulated for all virus infections. These OsNAC genes might be related to the health stage maintenance of the host plants. Interestingly, most of the genes in the subgroups TIP and SNAC were more highly expressed during RBSDV and RGSV infections. These results suggested that OsNAC genes might be related to the responses induced by the virus infection. All of the genes assigned to the TIP subgroups were highly expressed during RGSV infection when compared with the control. For RDV infection, the number of activated genes was greatest during infection with the S-strain, followed by the D84-strain and the O-strain, with seven OsNAC genes up-regulated during infection by all three strains. The Os12g03050 and Os11g05614 genes showed higher expression during infection with four of the five viruses, and Os11g03310, Os11g03370, and Os07g37920 genes showed high expression during at least three viral infections. We identified some duplicate genes that are classified as neofunctional and subfunctional according to their expression levels in different viral infections. A number of putative cis-elements were identified, which may help to clarify the function of these key genes in network pathways.
  2. Yoshikawa M, Ouji Y, Hirai N, Nakamura-Uchiyama F, Yamada M, Arizono N, et al.
    Trop Med Health, 2018;46:6.
    PMID: 29563849 DOI: 10.1186/s41182-018-0087-8
    Background: Countries in the Southeast Asia region have a high prevalence of soil-transmitted helminth, such as roundworm, whipworm, and hookworms [Ancylostoma duodenale, Necator americanus, Ancylostoma ceylanicum]. Recent molecular-based surveys have revealed that A. ceylanicum, a zoonotic hookworm, is likely the second most prevalent hookworm species infecting humans in that part of the world, while others have noted that this infection is an emerging public health risk not only for indigenous people but also for visitors from other countries.

    Case presentation: We recently encountered four cases of A. ceylanicum infection in Japanese individuals who returned from Southeast Asia and Papua New Guinea. Case 1 was a 25-year-old male who stayed in a rainforest in Malaysia for 4 weeks, where he developed abdominal pain and diarrhea in the third week. Eleven adult worms (five males, six females) were expelled after treatment with pyrantel pamoate and identified as A. ceylanicum based on morphological characteristics and DNA sequences of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. Case 2 was a 26-year-old male who spent 2 years as an overseas cooperation volunteer for agriculture in Papua New Guinea. He did not note any symptoms at that time, though eggs were detected in feces samples at a medical check-up examination after returning. Although collection of adult worms was unsuccessful, DNA analysis of the eggs for cox1 and the ribosomal internal transcribed spacer (ITS)-1 and ITS-2 genes demonstrated that they were A. ceylanicum. Case 3 was a 47-year-old male who spent 1 month in a rural village in Lao People's Democratic Republic and began suffering from watery diarrhea from the third week. A total of nine adult worms (three males, six females) were collected by endoscopic procedures and following treatment with pyrantel pamoate. Morphological examination and molecular analyses of the cox1 gene showed that they were A. ceylanicum. Case 4 was a 27-year-old male who participated in group travel to India for 5 days. Three weeks after returning, he developed abdominal pain and diarrhea. Hookworm eggs were found in feces samples and developed into larvae in culture, which were identified as A. ceylanicum based on molecular analysis of the cox1 gene. Eosinophilia was observed in all of the cases prior to treatment.

    Conclusions: A. ceylanicum should be recognized as an important etiologic pathogen of hookworm diseases in travelers to countries in the Southeast Asia and West Pacific Ocean regions.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links