Chromobacterium violaceum is a Gram-negative bacterium, found in tropical and subtropical regions. C. violaceum infection rarely occurs, but once occurs, it is associated with significant mortality due to severe systemic infection. Since the first human case from Malaysia in 1927, >150 cases of C. violaceum infection have been reported worldwide. We have described here a fatal case of C. violaceum infection in a tertiary care hospital in Dhaka, Bangladesh. To the best of our knowledge, this is the first case of C. violaceum infection in Bangladesh.
The HER2-positive patients occupy ~ 30% of the total breast cancer patients globally where no prevalent drugs are available to mitigate the frequent metastasis clinically except lapatinib and neratinib. This scarcity reinforced researchers' quest for new medications where natural substances are significantly considered. Valuing the aforementioned issues, this research aimed to study the ERBB2-mediated string networks that work behind the HER2-positive breast cancer formation regarding co-expression, gene regulation, GAMA-receptor-signaling pathway, cellular polarization, and signal inhibition. Following the overexpression, promotor methylation, and survivability profiles of ERBB2, the super docking position of HER2 was identified using the quantum tunneling algorithm. Supramolecular docking was conducted to study the target specificity of EPA and DHA fatty acids followed by a comprehensive molecular dynamic simulation (100 ns) to reveal the RMSD, RMSF, Rg, SASA, H-bonds, and MM/GBSA values. Finally, potential drug targets for EPA and DHA in breast cancer were constructed to determine the drug-protein interactions (DPI) at metabolic stages. Considering the values resulting from the combinational models of the oncoinformatic, pharmacodynamic, and metabolic parameters, long-chain omega-3 fatty acids like EPA and DHA can be considered as potential-targeted therapeutics for HER2-positive breast cancer treatment.