Displaying all 3 publications

Abstract:
Sort:
  1. Ramalingam S, Mohd S, Samsuddin SM, Min NG, Yusof N, Mansor A
    Cell Tissue Bank, 2015 Dec;16(4):545-52.
    PMID: 25687771 DOI: 10.1007/s10561-015-9501-1
    Bone allografts have been used widely to fill up essential void in orthopaedic surgeries. The benefit of using allografts to replace and reconstruct musculoskeletal injuries, fractures or disease has obtained overwhelming acceptance from orthopaedic surgeons worldwide. However, bacterial infection and disease transmission through bone allograft transplantation have always been a significant issue. Sterilization by radiation is an effective method to eliminate unwanted microorganisms thus assist in preventing life threatening allograft associated infections. Femoral heads procured from living donors and long bones (femur and tibia) procured from cadaveric donors were sterilized at 25 kGy in compliance with international standard ISO 11137. According to quality requirements, all records of bone banking were evaluated annually. This retrospective study was carried out on annual evaluation of radiation records from 1998 until 2012. The minimum doses absorbed by the bones were ranging from 25.3 to 38.2 kGy while the absorbed maximum doses were from 25.4 to 42.3 kGy. All the bones supplied by our UMMC Bone Bank were sterile at the required minimum dose of 25 kGy. Our analysis on dose variation showed that the dose uniformity ratios in 37 irradiated boxes of 31 radiation batches were in the range of 1.003-1.251, which indicated the doses were well distributed.
  2. Mohd S, Samsuddin SM, Ramalingam S, Min NW, Yusof N, Zaman TK, et al.
    Cell Tissue Bank, 2015 Dec;16(4):523-30.
    PMID: 25656787 DOI: 10.1007/s10561-015-9499-4
    The main advantage of establishing in-house bone banks is its ability to readily provide allograft bones for local surgeries. Bone procurement activities of our university bone bank during the 10 years of operation were reviewed. Socio-demographic data of donors, types of bone procured, cases of rejected bones and types of allograft bones transplanted are presented. From 179 potential donors, 73 % were accepted with 213 procured bones. Femoral head was the common bone transplanted (45 %), as it was also the most common procured (82 %). Bones were rejected mainly due to non-technical reasons (83 %) rather than positive results of microbiological (13 %) and serological (4 %) tests. Comprehensive data could not be obtained for further analysis due to difficulties in retrieving information. Therefore, quality assurance system was improved to establish more systematic documentations, as the basis of good banking practice with process control hence allowing traceability.
  3. Ramalingam S, Samsuddin SM, Yusof N, Mohd S, Hanafi NN, Min NW, et al.
    J Orthop Surg (Hong Kong), 2018 4 27;26(2):2309499018770906.
    PMID: 29695196 DOI: 10.1177/2309499018770906
    PURPOSE: Bone allografts supplied by University Malaya Medical Centre Bone Bank are sterilized by gamma radiation at 25 kGy in dry ice (DI) to minimize radiation effects. Use of cheaper and easily available cooling materials, gel ice (GI) and ice pack (IP), was explored. Composites of DI and GI were also studied for the use in routine transportations and radiation process.

    METHODS: (a) Five dummy bones were packed with DI, GI, or IP in a polystyrene box. The bone temperatures were monitored while the boxes were placed at room temperature over 96 h. Durations for each cooling material maintaining freezing temperatures below -40°C, -20°C, and 0°C were obtained from the bone temperature over time profiles. (b) Composites of DI (20, 15, 10, 5, and 0 kg) and GI were used to pack five dummy bones in a polystyrene box. The durations maintaining varying levels of freezing temperature were compared.

    RESULTS: DI (20 kg) maintained temperature below -40°C for 76.4 h as compared to 6.3 h in GI (20 bags) and 4.0 h in IP (15 packs). Composites of 15DI (15 kg DI and 9 GI bags) and 10DI (10 kg DI and 17 GI bags) maintained the temperature below -40°C for 61 and 35.5 h, respectively.

    CONCLUSION: Composites of DI and GI can be used to maintain bones in deep frozen state during irradiation, thus avoiding radiation effects on biomechanical properties. Sterile frozen bone allograft with preserved functional properties is required in clinical applications.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links