Displaying all 4 publications

Abstract:
Sort:
  1. Koo CL, Liew MJ, Mohamad MS, Salleh AH
    Biomed Res Int, 2013;2013:432375.
    PMID: 24228248 DOI: 10.1155/2013/432375
    Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs), support vector machine (SVM), and random forests (RFs) in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.
  2. Lu SJ, Salleh AH, Mohamad MS, Deris S, Omatu S, Yoshioka M
    Comput Biol Chem, 2014 12;53PB:175-183.
    PMID: 25462325 DOI: 10.1016/j.compbiolchem.2014.09.008
    Reconstructions of genome-scale metabolic networks from different organisms have become popular in recent years. Metabolic engineering can simulate the reconstruction process to obtain desirable phenotypes. In previous studies, optimization algorithms have been implemented to identify the near-optimal sets of knockout genes for improving metabolite production. However, previous works contained premature convergence and the stop criteria were not clear for each case. Therefore, this study proposes an algorithm that is a hybrid of the ant colony optimization algorithm and flux balance analysis (ACOFBA) to predict near optimal sets of gene knockouts in an effort to maximize growth rates and the production of certain metabolites. Here, we present a case study that uses Baker's yeast, also known as Saccharomyces cerevisiae, as the model organism and target the rate of vanillin production for optimization. The results of this study are the growth rate of the model organism after gene deletion and a list of knockout genes. The ACOFBA algorithm was found to improve the yield of vanillin in terms of growth rate and production compared with the previous algorithms.
  3. Chong SK, Mohamad MS, Mohamed Salleh AH, Choon YW, Chong CK, Deris S
    Comput Biol Med, 2014 Jun;49:74-82.
    PMID: 24763079 DOI: 10.1016/j.compbiomed.2014.03.011
    This paper presents a study on gene knockout strategies to identify candidate genes to be knocked out for improving the production of succinic acid in Escherichia coli. Succinic acid is widely used as a precursor for many chemicals, for example production of antibiotics, therapeutic proteins and food. However, the chemical syntheses of succinic acid using the traditional methods usually result in the production that is far below their theoretical maximums. In silico gene knockout strategies are commonly implemented to delete the gene in E. coli to overcome this problem. In this paper, a hybrid of Ant Colony Optimization (ACO) and Minimization of Metabolic Adjustment (MoMA) is proposed to identify gene knockout strategies to improve the production of succinic acid in E. coli. As a result, the hybrid algorithm generated a list of knockout genes, succinic acid production rate and growth rate for E. coli after gene knockout. The results of the hybrid algorithm were compared with the previous methods, OptKnock and MOMAKnock. It was found that the hybrid algorithm performed better than OptKnock and MOMAKnock in terms of the production rate. The information from the results produced from the hybrid algorithm can be used in wet laboratory experiments to increase the production of succinic acid in E. coli.
  4. Hon MK, Mohamad MS, Mohamed Salleh AH, Choon YW, Mohd Daud K, Remli MA, et al.
    Interdiscip Sci, 2019 Mar;11(1):33-44.
    PMID: 30758766 DOI: 10.1007/s12539-019-00324-z
    In recent years, metabolic engineering has gained central attention in numerous fields of science because of its capability to manipulate metabolic pathways in enhancing the expression of target phenotypes. Due to this, many computational approaches that perform genetic manipulation have been developed in the computational biology field. In metabolic engineering, conventional methods have been utilized to upgrade the generation of lactate and succinate in E. coli, although the yields produced are usually way below their theoretical maxima. To overcome the drawbacks  of such conventional methods, development of hybrid algorithm is introduced to obtain an optimal solution by proposing a gene knockout strategy in E. coli which is able to improve the production of lactate and succinate. The objective function of the hybrid algorithm is optimized using a swarm intelligence optimization algorithm and a Simple Constrained Artificial Bee Colony (SCABC) algorithm. The results maximize the production of lactate and succinate by resembling the gene knockout in E. coli. The Flux Balance Analysis (FBA) is integrated in a hybrid algorithm to evaluate the growth rate of E. coli as well as the productions of lactate and succinate. This results in the identification of a gene knockout list that contributes to maximizing the production of lactate and succinate in E. coli.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links