Displaying all 10 publications

Abstract:
Sort:
  1. Jing W, Tao H, Rahman MA, Kabir MN, Yafeng L, Zhang R, et al.
    Work, 2021;68(3):923-934.
    PMID: 33612534 DOI: 10.3233/WOR-203426
    BACKGROUND: Human-Computer Interaction (HCI) is incorporated with a variety of applications for input processing and response actions. Facial recognition systems in workplaces and security systems help to improve the detection and classification of humans based on the vision experienced by the input system.

    OBJECTIVES: In this manuscript, the Robotic Facial Recognition System using the Compound Classifier (RERS-CC) is introduced to improve the recognition rate of human faces. The process is differentiated into classification, detection, and recognition phases that employ principal component analysis based learning. In this learning process, the errors in image processing based on the extracted different features are used for error classification and accuracy improvements.

    RESULTS: The performance of the proposed RERS-CC is validated experimentally using the input image dataset in MATLAB tool. The performance results show that the proposed method improves detection and recognition accuracy with fewer errors and processing time.

    CONCLUSION: The input image is processed with the knowledge of the features and errors that are observed with different orientations and time instances. With the help of matching dataset and the similarity index verification, the proposed method identifies precise human face with augmented true positives and recognition rate.

  2. Zhang G, Jing W, Tao H, Rahman MA, Salih SQ, Al-Saffar A, et al.
    Work, 2021;68(3):935-943.
    PMID: 33612535 DOI: 10.3233/WOR-203427
    BACKGROUND: Human-Robot Interaction (HRI) has become a prominent solution to improve the robustness of real-time service provisioning through assisted functions for day-to-day activities. The application of the robotic system in security services helps to improve the precision of event detection and environmental monitoring with ease.

    OBJECTIVES: This paper discusses activity detection and analysis (ADA) using security robots in workplaces. The application scenario of this method relies on processing image and sensor data for event and activity detection. The events that are detected are classified for its abnormality based on the analysis performed using the sensor and image data operated using a convolution neural network. This method aims to improve the accuracy of detection by mitigating the deviations that are classified in different levels of the convolution process.

    RESULTS: The differences are identified based on independent data correlation and information processing. The performance of the proposed method is verified for the three human activities, such as standing, walking, and running, as detected using the images and sensor dataset.

    CONCLUSION: The results are compared with the existing method for metrics accuracy, classification time, and recall.

  3. Wei H, Rahman MA, Hu X, Zhang L, Guo L, Tao H, et al.
    Work, 2021;68(3):845-852.
    PMID: 33612527 DOI: 10.3233/WOR-203418
    BACKGROUND: The selection of orders is the method of gathering the parts needed to assemble the final products from storage sites. Kitting is the name of a ready-to-use package or a parts kit, flexible robotic systems will significantly help the industry to improve the performance of this activity. In reality, despite some other limitations on the complexity of components and component characteristics, the technological advances in recent years in robotics and artificial intelligence allows the treatment of a wide range of items.

    OBJECTIVE: In this article, we study the robotic kitting system with a Robotic Mounted Rail Arm System (RMRAS), which travels narrowly to choose the elements.

    RESULTS: The objective is to evaluate the efficiency of a robotic kitting system in cycle times through modeling of the elementary kitting operations that the robot performs (pick and room, move, change tools, etc.). The experimental results show that the proposed method enhances the performance and efficiency ratio when compared to other existing methods.

    CONCLUSION: This study with the manufacturer can help him assess the robotic area performance in a given design (layout and picking a policy, etc.) as part of an ongoing project on automation of kitting operations.

  4. Tao H, Rahman MA, Jing W, Li Y, Li J, Al-Saffar A, et al.
    Work, 2021;68(3):903-912.
    PMID: 33720867 DOI: 10.3233/WOR-203424
    BACKGROUND: Human-robot interaction (HRI) is becoming a current research field for providing granular real-time applications and services through physical observation. Robotic systems are designed to handle the roles of humans and assist them through intrinsic sensing and commutative interactions. These systems handle inputs from multiple sources, process them, and deliver reliable responses to the users without delay. Input analysis and processing is the prime concern for the robotic systems to understand and resolve the queries of the users.

    OBJECTIVES: In this manuscript, the Interaction Modeling and Classification Scheme (IMCS) is introduced to improve the accuracy of HRI. This scheme consists of two phases, namely error classification and input mapping. In the error classification process, the input is analyzed for its events and conditional discrepancies to assign appropriate responses in the input mapping phase. The joint process is aided by a linear learning model to analyze the different conditions in the event and input detection.

    RESULTS: The performance of the proposed scheme shows that it is capable of improving the interaction accuracy by reducing the ratio of errors and interaction response by leveraging the information extraction from the discrete and successive human inputs.

    CONCLUSION: The fetched data are analyzed by classifying the errors at the initial stage to achieve reliable responses.

  5. Bhagat SK, Pyrgaki K, Salih SQ, Tiyasha T, Beyaztas U, Shahid S, et al.
    Chemosphere, 2021 Aug;276:130162.
    PMID: 34088083 DOI: 10.1016/j.chemosphere.2021.130162
    Copper (Cu) ion in wastewater is considered as one of the crucial hazardous elements to be quantified. This research is established to predict copper ions adsorption (Ad) by Attapulgite clay from aqueous solutions using computer-aided models. Three artificial intelligent (AI) models are developed for this purpose including Grid optimization-based random forest (Grid-RF), artificial neural network (ANN) and support vector machine (SVM). Principal component analysis (PCA) is used to select model inputs from different variables including the initial concentration of Cu (IC), the dosage of Attapulgite clay (Dose), contact time (CT), pH, and addition of NaNO3 (SN). The ANN model is found to predict Ad with minimum root mean square error (RMSE = 0.9283) and maximum coefficient of determination (R2 = 0.9974) when all the variables (i.e., IC, Dose, CT, pH, SN) were considered as input. The prediction accuracy of Grid-RF model is found similar to ANN model when a few numbers of predictors are used. According to prediction accuracy, the models can be arranged as ANN-M5> Grid-RF-M5> Grid-RF-M4> ANN-M4> SVM-M4> SVM-M5. Overall, the applied statistical analysis of the results indicates that ANN and Grid-RF models can be employed as a computer-aided model for monitoring and simulating the adsorption from aqueous solutions by Attapulgite clay.
  6. Jameel SK, Aydin S, Ghaeb NH, Majidpour J, Rashid TA, Salih SQ, et al.
    Biomolecules, 2022 Dec 16;12(12).
    PMID: 36551316 DOI: 10.3390/biom12121888
    Corneal diseases are the most common eye disorders. Deep learning techniques are used to perform automated diagnoses of cornea. Deep learning networks require large-scale annotated datasets, which is conceded as a weakness of deep learning. In this work, a method for synthesizing medical images using conditional generative adversarial networks (CGANs), is presented. It also illustrates how produced medical images may be utilized to enrich medical data, improve clinical decisions, and boost the performance of the conventional neural network (CNN) for medical image diagnosis. The study includes using corneal topography captured using a Pentacam device from patients with corneal diseases. The dataset contained 3448 different corneal images. Furthermore, it shows how an unbalanced dataset affects the performance of classifiers, where the data are balanced using the resampling approach. Finally, the results obtained from CNN networks trained on the balanced dataset are compared to those obtained from CNN networks trained on the imbalanced dataset. For performance, the system estimated the diagnosis accuracy, precision, and F1-score metrics. Lastly, some generated images were shown to an expert for evaluation and to see how well experts could identify the type of image and its condition. The expert recognized the image as useful for medical diagnosis and for determining the severity class according to the shape and values, by generating images based on real cases that could be used as new different stages of illness between healthy and unhealthy patients.
  7. Salih SQ, Alsewari AA, Wahab HA, Mohammed MKA, Rashid TA, Das D, et al.
    PLoS One, 2023;18(7):e0288044.
    PMID: 37406006 DOI: 10.1371/journal.pone.0288044
    The retrieval of important information from a dataset requires applying a special data mining technique known as data clustering (DC). DC classifies similar objects into a groups of similar characteristics. Clustering involves grouping the data around k-cluster centres that typically are selected randomly. Recently, the issues behind DC have called for a search for an alternative solution. Recently, a nature-based optimization algorithm named Black Hole Algorithm (BHA) was developed to address the several well-known optimization problems. The BHA is a metaheuristic (population-based) that mimics the event around the natural phenomena of black holes, whereby an individual star represents the potential solutions revolving around the solution space. The original BHA algorithm showed better performance compared to other algorithms when applied to a benchmark dataset, despite its poor exploration capability. Hence, this paper presents a multi-population version of BHA as a generalization of the BHA called MBHA wherein the performance of the algorithm is not dependent on the best-found solution but a set of generated best solutions. The method formulated was subjected to testing using a set of nine widespread and popular benchmark test functions. The ensuing experimental outcomes indicated the highly precise results generated by the method compared to BHA and comparable algorithms in the study, as well as excellent robustness. Furthermore, the proposed MBHA achieved a high rate of convergence on six real datasets (collected from the UCL machine learning lab), making it suitable for DC problems. Lastly, the evaluations conclusively indicated the appropriateness of the proposed algorithm to resolve DC issues.
  8. Tao H, Rahman MA, Al-Saffar A, Zhang R, Salih SQ, Zain JM, et al.
    Work, 2021;68(3):853-861.
    PMID: 33612528 DOI: 10.3233/WOR-203419
    BACKGROUND: Nowadays, workplace violence is found to be a mental health hazard and considered a crucial topic. The collaboration between robots and humans is increasing with the growth of Industry 4.0. Therefore, the first problem that must be solved is human-machine security. Ensuring the safety of human beings is one of the main aspects of human-robotic interaction. This is not just about preventing collisions within a shared space among human beings and robots; it includes all possible means of harm for an individual, from physical contact to unpleasant or dangerous psychological effects.

    OBJECTIVE: In this paper, Non-linear Adaptive Heuristic Mathematical Model (NAHMM) has been proposed for the prevention of workplace violence using security Human-Robot Collaboration (HRC). Human-Robot Collaboration (HRC) is an area of research with a wide range of up-demands, future scenarios, and potential economic influence. HRC is an interdisciplinary field of research that encompasses cognitive sciences, classical robotics, and psychology.

    RESULTS: The robot can thus make the optimal decision between actions that expose its capabilities to the human being and take the best steps given the knowledge that is currently available to the human being. Further, the ideal policy can be measured carefully under certain observability assumptions.

    CONCLUSION: The system is shown on a collaborative robot and is compared to a state of the art security system. The device is experimentally demonstrated. The new system is being evaluated qualitatively and quantitatively.

  9. Afan HA, Allawi MF, El-Shafie A, Yaseen ZM, Ahmed AN, Malek MA, et al.
    Sci Rep, 2020 03 13;10(1):4684.
    PMID: 32170078 DOI: 10.1038/s41598-020-61355-x
    In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.
  10. Dastan D, Mohammed MKA, Al-Mousoi AK, Kumar A, Salih SQ, JosephNg PS, et al.
    Sci Rep, 2023 Jun 05;13(1):9076.
    PMID: 37277466 DOI: 10.1038/s41598-023-36427-3
    According to recent reports, planar structure-based organometallic perovskite solar cells (OPSCs) have achieved remarkable power conversion efficiency (PCE), making them very competitive with the more traditional silicon photovoltaics. A complete understanding of OPSCs and their individual parts is still necessary for further enhancement in PCE. In this work, indium sulfide (In2S3)-based planar heterojunction OPSCs were proposed and simulated with the SCAPS (a Solar Cell Capacitance Simulator)-1D programme. Initially, OPSC performance was calibrated with the experimentally fabricated architecture (FTO/In2S3/MAPbI3/Spiro-OMeTAD/Au) to evaluate the optimum parameters of each layer. The numerical calculations showed a significant dependence of PCE on the thickness and defect density of the MAPbI3 absorber material. The results showed that as the perovskite layer thickness increased, the PCE improved gradually but subsequently reached a maximum at thicknesses greater than 500 nm. Moreover, parameters involving the series resistance as well as the shunt resistance were recognized to affect the performance of the OPSC. Most importantly, a champion PCE of over 20% was yielded under the optimistic simulation conditions. Overall, the OPSC performed better between 20 and 30 °C, and its efficiency rapidly decreases above that temperature.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links