Displaying all 3 publications

Abstract:
Sort:
  1. Abidin MS, Hashim AM, Sharifabad ME, Rahman SF, Sadoh T
    Sensors (Basel), 2011;11(3):3067-77.
    PMID: 22163786 DOI: 10.3390/s110303067
    The sensing responses in aqueous solution of an open-gated pH sensor fabricated on an AlGaN/GaN high-electron-mobility-transistor (HEMT) structure are investigated. Under air-exposed ambient conditions, the open-gated undoped AlGaN/GaN HEMT only shows the presence of a linear current region. This seems to show that very low Fermi level pinning by surface states exists in the undoped AlGaN/GaN sample. In aqueous solution, typical current-voltage (I-V) characteristics with reasonably good gate controllability are observed, showing that the potential of the AlGaN surface at the open-gated area is effectively controlled via aqueous solution by the Ag/AgCl gate electrode. The open-gated undoped AlGaN/GaN HEMT structure is capable of distinguishing pH level in aqueous electrolytes and exhibits linear sensitivity, where high sensitivity of 1.9 mA/pH or 3.88 mA/mm/pH at drain-source voltage, V(DS) = 5 V is obtained. Due to the large leakage current where it increases with the negative gate voltage, Nernstian like sensitivity cannot be determined as commonly reported in the literature. This large leakage current may be caused by the technical factors rather than any characteristics of the devices. Surprisingly, although there are some imperfections in the device preparation and measurement, the fabricated devices work very well in distinguishing the pH levels. Suppression of current leakage by improving the device preparation is likely needed to improve the device performance. The fabricated device is expected to be suitable for pH sensing applications.
  2. Abidin MSZ, Matsumura R, Anisuzzaman M, Park JH, Muta S, Mahmood MR, et al.
    Materials (Basel), 2013 Nov 06;6(11):5047-5057.
    PMID: 28788375 DOI: 10.3390/ma6115047
    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm(-1) corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm(-1) corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.
  3. Abidin MSZ, Morshed T, Chikita H, Kinoshita Y, Muta S, Anisuzzaman M, et al.
    Materials (Basel), 2014 Feb 24;7(2):1409-1421.
    PMID: 28788521 DOI: 10.3390/ma7021409
    The effects of annealing temperatures on composition and strain in Si
    x
    Ge1-x, obtained by rapid melting growth of electrodeposited Ge on Si (100) substrate were investigated. Here, a rapid melting process was performed at temperatures of 1000, 1050 and 1100 °C for 1 s. All annealed samples show single crystalline structure in (100) orientation. A significant appearance of Si-Ge vibration mode peak at ~400 cm-1 confirms the existence of Si-Ge intermixing due to out-diffusion of Si into Ge region. On a rapid melting process, Ge melts and reaches the thermal equilibrium in short time. Si at Ge/Si interface begins to dissolve once in contact with the molten Ge to produce Si-Ge intermixing. The Si fraction in Si-Ge intermixing was calculated by taking into account the intensity ratio of Ge-Ge and Si-Ge vibration mode peaks and was found to increase with the annealing temperatures. It is found that the strain turns from tensile to compressive as the annealing temperature increases. The Si fraction dependent thermal expansion coefficient of Si
    x
    Ge1-x is a possible cause to generate such strain behavior. The understanding of compositional and strain characteristics is important in Ge/Si heterostructure as these properties seem to give significant effects in device performance.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links