Displaying all 2 publications

Abstract:
Sort:
  1. Malon RS, Sadir S, Balakrishnan M, Córcoles EP
    Biomed Res Int, 2014;2014:962903.
    PMID: 25276835 DOI: 10.1155/2014/962903
    Saliva is increasingly recognised as an attractive diagnostic fluid. The presence of various disease signalling salivary biomarkers that accurately reflect normal and disease states in humans and the sampling benefits compared to blood sampling are some of the reasons for this recognition. This explains the burgeoning research field in assay developments and technological advancements for the detection of various salivary biomarkers to improve clinical diagnosis, management, and treatment. This paper reviews the significance of salivary biomarkers for clinical diagnosis and therapeutic applications, with focus on the technologies and biosensing platforms that have been reported for screening these biomarkers.
  2. Wicaksono DH, Syazwani IN, Ratnarathorn N, Sadir S, Shahir S, Ruckthong L, et al.
    Bioanalysis, 2019 May;11(9):855-873.
    PMID: 31084195 DOI: 10.4155/bio-2018-0190
    Aim: Time-based microfluidic absorption sampling was proposed using cotton fiber-based device made in swab stick. The assay was optimized and compared with conventional pipetted drop sampling using the same device. Materials & methods: Reagents were integrated into cotton fiber device for assessing concentration of analytes by the colorimetric detection method through time-based absorption sampling microfluidic system. All assay parameters were first optimized using conventional pipette-based drop sampling. Results: The color intensity is linear in the relevant concentration range of the analytes. The LOD are 0.189 mM for glucose and 6.56 μM for nitrite, respectively. These values are better than conventional drop sampling. The fiber-containing swab itself functions as sampling, assay and calibration device. Conclusion: Microfluidic cotton fiber-based assay device was fabricated and can determine analyte concentration in artificial salivary samples, colorimetrically, by time-based absorption sampling without the need of complex equipments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links