Displaying all 3 publications

Abstract:
Sort:
  1. Sabri MZ, Hamid AAA, Hitam SMS, Rahim MZA
    Biophys Chem, 2020 12;267:106492.
    PMID: 33035750 DOI: 10.1016/j.bpc.2020.106492
    Aptamers are oligonucleotides and peptides around 15-100 bases in length and are suitable as detection probes or as therapeutics molecules. There are growing interests in the aptamer screening approach through computational simulation methods. DNA and RNA modelling lacks of validation on their predicted 3D structures due to less number of validation tools, unlike protein structures. We suggest an approach to design the stem-loop/hairpin for the three dimensional structure of DNA aptamers through serial applications of computational prediction methods by comparing the simulated structures with the experimental data deposited in PDB Data bank, followed by MD simulations. The result shows minimal structural differences were observed between the designed and the original NMR aptamers, and the stem-loop conformational structures were also retained during the MD thus suggesting the proposed aptamers designing methods are able to synthesize a high quality molecular structure of hairpin aptamers, comparable to the NMR structures.
  2. Sabri MZ, Abdul Hamid AA, Sayed Hitam SM, Abdul Rahim MZ
    Adv Bioinformatics, 2019;2019:6912914.
    PMID: 31346332 DOI: 10.1155/2019/6912914
    Aptamer has been long studied as a substitute of antibodies for many purposes. However, due to the exceeded length of the aptamers obtained in vitro, difficulties arise in its manipulation during its molecular conjugation on the matrix surfaces. Current study focuses on computational improvement for aptamers screening of hepatitis B surface antigen (HBsAg) through optimization of the length sequences obtained from SELEX. Three original aptamers with affinity against HBsAg were truncated into five short hairpin structured aptamers and their affinity against HBsAg was thoroughly studied by molecular docking, molecular dynamics (MD) simulation, and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) method. The result shows that truncated aptamers binding on HBsAg "a" determinant region are stabilized by the dynamic H-bond formation between the active binding residues and nucleotides. Amino acids residues with the highest hydrogen bonds hydrogen bond interactions with all five aptamers were determined as the active binding residues and further characterized. The computational prediction of complexes binding will include validations through experimental assays in future studies. Current study will improve the current in vitro aptamers by minimizing the aptamer length for its easy manipulation.
  3. Chai TT, Koh JA, Wong CC, Sabri MZ, Wong FC
    Molecules, 2021 Dec 06;26(23).
    PMID: 34885982 DOI: 10.3390/molecules26237396
    Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links