Tropical peatlands have high potential function as a major source of atmospheric methane (CH4) and can contribute to global warming due to their large soil carbon stock, high groundwater level (GWL), high humidity and high temperature. In this study, a process-based denitrification-decomposition (DNDC) model was used to simulate CH4 fluxes in a pristine tropical peatland in Sarawak. To test the accuracy of the model, eddy covariance tower datasets were compared. The model was validated for the year 2014, which showed the good performance of the model for simulating CH4 emissions. The monthly predictive ability of the model was better than the daily predictive ability, with a determination coefficient (R2) of 0.67, model error (ME) of 2.47, root mean square error (RMSE) of 3.33, mean absolute error (MAE) of 2.92 and mean square error (MSE) of 11.08. The simulated years of 2015 and 2016 showed the good performance of the DNDC model, although under- and overestimations were found during the drier and rainy months. Similarly, the monthly simulations for the year were better than the daily simulations for the year, showing good correlations at R2 at 0.84 (2015) and 0.87 (2016). Better statistical performance in terms of monthly ME, RMSE, MAE and MSE at - 0.11, 3.38, 3.05 and 11.45 for 2015 and - 1.14, 5.28, 4.93 and 27.83 for 2016, respectively, was also observed. Although the statistical performance of the model simulation for daily average CH4 fluxes was lower than that of the monthly average, we found that the results for total fluxes agreed well between the observed and the simulated values (E = 6.79% and difference = 3.3%). Principal component analysis (PCA) showed that CH4, GWL and rainfall were correlated with each other and explained 41.7% of the total variation. GWL was found to be relatively important in determining the CH4 fluxes in the naturally inundated pristine tropical peatland. These results suggest that GWL is an essential input variable for the DNDC model for predicting CH4 fluxes from the pristine tropical peatland in Sarawak on a monthly basis.
At the end of 2019, a novel coronavirus COVID-19 emerged in Wuhan, China, and later spread throughout the world, including Iraq. To control the rapid dispersion of the virus, Iraq, like other countries, has imposed national lockdown measures, such as social distancing, restriction of automobile traffic, and industrial enterprises. This has led to reduced human activities and air pollutant emissions, which caused improvement in air quality. This study focused on the analysis of the impact of the six partial, total, and post-lockdown periods (1st partial lockdown from March 1 to16, 2020, 1st total lockdown from March 17 to April 21, 2nd partial lockdown from April 22 to May 23, 2nd total lockdown from May 24 to June 13, 3rd partial lockdown from June 14 to August 19, and end partial lockdown from August 20 to 31) on the average of daily NO2, O3, PM2.5, and PM10 concentrations, as well as air quality index (AQI) in 18 Iraqi provinces during these periods (from March 1st to August 31st, 2020). The analysis showed a decline in the average of daily PM2.5, PM10, and NO2 concentrations by 24%, 15%, and 8%, respectively from March 17 to April 21, 2020 (first phase of total lockdown) in comparison to the 1st phase of partial lockdown (March 1 to March 16, 2020). Furthermore, the O3 increased by 10% over the same period. The 2nd phase of total lockdown, the 3rd partial lockdown, and the post-lockdown periods witnessed declines in PM2.5 by 8%, 11%, and 21%, respectively, while the PM10 increases over the same period. Iraqi also witnessed improvement in the AQI by 8% during the 1st phase of total lockdown compared to the 1st phase of partial lockdown. The level of air pollutants in Iraq declined significantly during the six lockdown periods as a result of reduced human activities. This study gives confidence that when strict measures are implemented, air quality can improve.
This paper aims to select the most appropriate rain-based meteorological drought index for detecting drought characteristics and identifying tropical drought events in the Johor River Basin (JRB). Based on a multi-step approach, the study evaluated seven drought indices, including the Rainfall Anomaly Index (RAI), Standardized Precipitation Index (SPI), China-Z Index (CZI), Modified China-Z Index (MCZI), Percent of Normal (PN), Deciles Index (DI), and Z-Score Index (ZSI), based on the CHIRPS rainfall gridded-based datasets from 1981 to 2020. Results showed that CZI, MCZI, SPI, and ZSI outperformed the other indices based on their correlation and linearity (R2 = 0.96-0.99) along with their ranking based on the Compromise Programming Index (CPI). The historical drought evaluation revealed that MCZI, SPI, and ZSI performed similarly in detecting drought events, but SPI was more effective in detecting spatial coverage and the occurrence of 'very dry' and 'extremely dry' drought events. Based on SPI, the study found that the downstream area, north-easternmost area, and eastern boundary of the basin were more prone to higher frequency and longer duration droughts. Furthermore, the study found that prolonged droughts are characterized by episodic drought events, which occur with one to three months of 'relief period' before another drought event occurs. The study revealed that most drought events that coincide with El Niño, positive Indian Ocean Dipole (IOD), and negative Madden-Julian Oscillation (MJO) events, or a combination of these events, may worsen drought conditions. The application of CHIRPS datasets enables better spatiotemporal mapping and prediction of drought for JRB, and the output is pertinent for improving water management strategies and adaptation measures. Understanding spatiotemporal drought conditions is crucial to ensuring sustainable development and policies through better regulation of human activities. The framework of this research can be applied to other river basins in Malaysia and other parts of Southeast Asia.
Urban areas are quickly established, and the overwhelming population pressure is triggering heat stress in the metropolitan cities. Climate change impact is the key aspect for maintaining the urban areas and building proper urban planning because spreading of the urban area destroyed the vegetated land and increased heat variation. Remote sensing-based on Landsat images are used for investigating the vegetation circumstances, thermal variation, urban expansion, and surface urban heat island or SUHI in the three megacities of Iraq like Baghdad, Erbil, and Basrah. Four satellite imageries are used aimed at land use and land cover (LULC) study from 1990 to 2020, which indicate the land transformation of those three major cities in Iraq. The average annually temperature is increased during 30 years like Baghdad (0.16 °C), Basrah (0.44 °C), and Erbil (0.32 °C). The built-up area is increased 147.1 km2 (Erbil), 217.86 km2 (Baghdad), and 294.43 km2 (Erbil), which indicated the SUHI affects the entire area of the three cities. The bare land is increased in Baghdad city, which indicated the local climatic condition and affected the livelihood. Basrah City is affected by anthropogenic activities and most areas of Basrah were converted into built-up land in the last 30 years. In Erbil, agricultural land (295.81 km2) is increased. The SUHI study results indicated the climate change effect in those three cities in Iraq. This study's results are more useful for planning, management, and sustainable development of urban areas.
The most recent set of General Circulation Models (GCMs) derived from the Coupled Model Intercomparison Project Phase 6 (CMIP6) was used in this work to analyse the spatiotemporal patterns of future rainfall distribution across the Johor River Basin (JRB) in Malaysia. A group of 23 GCMs were chosen for comparative assessment in simulating basin-scale rainfall based on daily rainfall from the historical period of the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS). The methodological novelty of this study lies in the application of relative importance metrics (RIM) to rank and select historical GCM simulations for reproducing rainfall at 109 CHIRPS grid points within the JRB. In order to choose the top GCMs, the rankings given by RIM were aggregated using the compromise programming index (CPI) and Jenks optimised classification (JOC). It was found that ACCESS-ESM1-5 and CMCC-ESM2 were ranked the highest in most of the grid. The final GCM was then bias-corrected using the linear scaling method before being ensemble based on the Bayesian model averaging (BMA) technique. The spatiotemporal assessment of the ensemble model for the different months over the near-future period 2021-2060 and far-future period 2061-2100 was compared with those under Shared Socioeconomic Pathways (SSPs), namely, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Heterogeneous changes in rainfall were projected across the JRB, with both increasing and decreasing trends. In the near-future and far-future scenarios, higher rainfall was projected for December, indicating an elevated risk of flooding during the end of the North East monsoon (NEM). Conversely, August showed a decreasing trend in rainfall, implying an increasing risk of severe drought. The findings of this study provide valuable insights for effective water resource management and climate change adaptation in the region.
One of the direct and unavoidable consequences of global warming-induced rising temperatures is the more recurrent and severe heatwaves. In recent years, even countries like Malaysia seldom had some mild to severe heatwaves. As the Earth's average temperature continues to rise, heatwaves in Malaysia will undoubtedly worsen in the future. It is crucial to characterize and monitor heat events across time to effectively prepare for and implement preventative actions to lessen heatwave's social and economic effects. This study proposes heatwave-related indices that take into account both daily maximum (Tmax) and daily lowest (Tmin) temperatures to evaluate shifts in heatwave features in Peninsular Malaysia (PM). Daily ERA5 temperature dataset with a geographical resolution of 0.25° for the period 1950-2022 was used to analyze the changes in the frequency and severity of heat waves across PM, while the LandScan gridded population data from 2000 to 2020 was used to calculate the affected population to the heatwaves. This study also utilized Sen's slope for trend analysis of heatwave characteristics, which separates multi-decadal oscillatory fluctuations from secular trends. The findings demonstrated that the geographical pattern of heatwaves in PM could be reconstructed if daily Tmax is more than the 95th percentile for 3 or more days. The data indicated that the southwest was more prone to severe heatwaves. The PM experienced more heatwaves after 2000 than before. Overall, the heatwave-affected area in PM has increased by 8.98 km2/decade and its duration by 1.54 days/decade. The highest population affected was located in the central south region of PM. These findings provide valuable insights into the heatwaves pattern and impact.
Climate change has significantly altered the characteristics of climate zones, posing considerable challenges to ecosystems and biodiversity, particularly in Borneo, known for its high species density per unit area. This study aimed to classify the region into homogeneous climate groups based on long-term average behavior. The most effective parameters from the high-resolution daily gridded Princeton climate datasets spanning 65 years (1950-2014) were utilized, including rainfall, relative humidity (RH), temperatures (Tavg, Tmin, Tmax, and diurnal temperature range (DTR)), along with elevation data at 0.25° resolution. The FCM clustering method outperformed K-Mean and two Ward's hierarchical methods (WardD and WardD2) in classifying Borneo's climate zones based on multi-criteria assessment, exhibiting the lowest average distance (2.172-2.180) and the highest compromise programming index (CPI)-based correlation ranking among cluster averages across all climate parameters. Borneo's climate zones were categorized into four: 'Wet and cold' (WC) and 'Wet' (W) representing wetter zones, and 'Wet and hot' (WH) and 'Dry and hot' (DH) representing hotter zones, each with clearly defined boundaries. For future projection, EC-Earth3-Veg ranked first for all climate parameters across 961 grid points, emerging as the top-performing model. The linear scaling (LS) bias-corrected EC-Earth3-Veg model, as shown in the Taylor diagram, closely replicated the observed datasets, facilitating future climate zone reclassification. Improved performance across parameters was evident based on MAE (35.8-94.6%), MSE (57.0-99.5%), NRMSE (42.7-92.1%), PBIAS (100-108%), MD (23.0-85.3%), KGE (21.1-78.1%), and VE (5.1-9.1%), with closer replication of empirical probability distribution function (PDF) curves during the validation period. In the future, Borneo's climate zones will shift notably, with WC elongating southward along the mountainous spine, W forming an enclave over the north-central mountains, WH shifting northward and shrinking inland, and DH expanding northward along the western coast. Under SSP5-8.5, WC is expected to expand by 39% and 11% for the mid- and far-future periods, respectively, while W is set to shrink by 46%. WH is projected to expand by 2% and 8% for the mid- and far-future periods, respectively. Conversely, DH is expected to expand by 43% for the far-future period but shrink by 42% for the mid-future period. This study fills a gap by redefining Borneo's climate zones based on an increased number of effective parameters and projecting future shifts, utilizing advanced clustering methods (FCM) under CMIP6 scenarios. Importantly, it contributes by ranking GCMs using RIMs and CPI across multiple climate parameters, addressing a previous gap in GCM assessment. The study's findings can facilitate cross-border collaboration by providing a shared understanding of climate dynamics and informing joint environmental management and disaster response efforts.
Climatic condition is triggering human health emergencies and earth's surface changes. Anthropogenic activities, such as built-up expansion, transportation development, industrial works, and some extreme phases, are the main reason for climate change and global warming. Air pollutants are increased gradually due to anthropogenic activities and triggering the earth's health. Nitrogen Dioxide (NO2), Carbon Monoxide (CO), and Aerosol Optical Depth (AOD) are truthfully important for air quality measurement because those air pollutants are more harmful to the environment and human's health. Earth observational Sentinel-5P is applied for monitoring the air pollutant and chemical conditions in the atmosphere from 2018 to 2021. The cloud computing-based Google Earth Engine (GEE) platform is applied for monitoring those air pollutants and chemical components in the atmosphere. The NO2 variation indicates high during the time because of the anthropogenic activities. Carbon Monoxide (CO) is also located high between two 1-month different maps. The 2020 and 2021 results indicate AQI change is high where 2018 and 2019 indicates low AQI throughout the year. The Kolkata have seven AQI monitoring station where high nitrogen dioxide recorded 102 (2018), 48 (2019), 26 (2020) and 98 (2021), where Delhi AQI stations recorded 99 (2018), 49 (2019), 37 (2020), and 107 (2021). Delhi, Kolkata, Mumbai, Pune, and Chennai recorded huge fluctuations of air pollutants during the study periods, where ~ 50-60% NO2 was recorded as high in the recent time. The AOD was noticed high in Uttar Pradesh in 2020. These results indicate that air pollutant investigation is much necessary for future planning and management otherwise; our planet earth is mostly affected by the anthropogenic and climatic conditions where maybe life does not exist.