Displaying all 3 publications

Abstract:
Sort:
  1. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
  2. Abbasi MA, Rubab K, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Raza H, et al.
    ACS Omega, 2023 Jun 27;8(25):22899-22911.
    PMID: 37396264 DOI: 10.1021/acsomega.3c01882
    The aim of this work was to bring forth some new hybrid molecules having pharmacologically potent indole and 1,3,4-oxadiazole heterocyclic moieties unified with a propanamide entity. The synthetic methodology was initiated by esterification of 2-(1H-indol-3-yl)acetic acid (1) in a catalytic amount of sulfuric acid and ethanol in excess, to form ethyl 2-(1H-indol-3-yl)acetate (2), which was converted to 2-(1H-indol-3-yl)acetohydrazide (3) and further transformed to 5-(1H-indole-3-yl-methyl)-1,3,4-oxadiazole-2-thiol (4). 3-Bromopropanoyl chloride (5) was reacted with various amines (6a-s) in aqueous alkaline medium to generate a series of electrophiles, 3-bromo-N-(substituted)propanamides (7a-s), and these were further reacted with nucleophile 4 in DMF and NaH base to yield the targeted N-(substituted)-3-{(5-(1H-indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl)sulfanyl}propanamides (8a-s). The chemical structures of these biheterocyclic propanamides were confirmed by IR, 1H NMR, 13C NMR, and EI-MS spectral techniques. These compounds were evaluated for their enzyme inhibitory potentials against the α-glucosidase enzyme, where the compound 8l showed promising enzyme inhibitory potential with an IC50 value less than that of the standard acarbose. Molecular docking results of these molecules were coherent with the results of their enzyme inhibitory potentials. Cytotoxicity was assessed by the percentage of hemolytic activity method, and these compounds generally exhibited very low values as compared to the reference standard, Triton-X. Hence, some of these biheterocyclic propanamides might be considered as salient therapeutic agents in further stages of antidiabetic drug development.
  3. Rubab K, Abbasi MA, Rehman A, Siddiqui SZ, Shah SAA, Ashraf M, et al.
    Pak J Pharm Sci, 2017 Jul;30(4):1263-1274.
    PMID: 29039324
    The undertaken research was initiated by transforming 2-(1H-Indol-3-yl)acetic acid (1) in catalytic amount of sulfuric acid and ethanol to ethyl 2-(1H-Indol-3-yl)acetate (2), which was then reacted with hydrazine monohydrate in methanol to form 2-(1H-Indol-3-yl)acetohydrazide (3). Further, The reaction scheme was designed into two pathways where, first pathway involved The reaction of 3 with substituted aromatic aldehydes (4a-o) in methanol with few drops of glacial acetic acid to generate 2-(1H-Indol-3-yl)-N'-[(un)substitutedphenylmethylidene]acetohydrazides (5a-o) and in second pathway 3 was reacted with acyl halides (6a-e) in basic aqueous medium (pH 9-10) to afford 2-(1H-Indol-3-yl)-N'-[(un)substitutedbenzoyl/2-thienylcarbonyl]acetohydrazides (7a-e). All The synthesized derivatives were characterized by IR, EI-MS and 1H-NMR spectral techniques and evaluated for their anti-bacterial potentials against Gram positive and Gram negative bacterial strains and it was found that compounds 7a-d exhibited antibacterial activities very close to standard Ciprofloxacin. The synthesized derivatives demonstrated moderate to weak anti-enzymatic potential against α-Glucosidase and Butyrylcholinesterase (BChE) where, compounds 7c and 5c exhibited comparatively better inhibition against these enzymes respectively. Compounds 7a, 7d and 7e showed excellent anti-enzymatic potentials against Lipoxygenase (LOX) and their IC50 values were much lower than the reference standard Baicalein. Enzyme inhibitory activities were also supported by computational docking results. Compounds 5c, 7a, 7b and 7c also showed low values of % hemolytic activity as well, showing that these molecules were not toxic, indicating that these molecules can be utilized as potential therapeutic agents against inflammatory ailments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links