METHODS: We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes.
RESULTS: We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer.
CONCLUSION: These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.
METHODS: We included women of European ancestry with a prevalent first primary invasive BC (BRCA1 = 6,591 with 1,402 prevalent CBC cases; BRCA2 = 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall and ER-specific PRS313 and CBC risk.
RESULTS: For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS313 showed the largest association with CBC risk, hazard ratio (HR) per SD = 1.12, 95% confidence interval (CI) (1.06-1.18), C-index = 0.53; for BRCA2 heterozygotes, this was the ER-positive PRS313, HR = 1.15, 95% CI (1.07-1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological characteristics for the first BC did not change association effect sizes. For women developing first BC
METHODS: We characterised the pathologic features of 419 BRCA1/2 MBCs and, using logistic regression analysis, contrasted those with data from 9675 BRCA1/2 FBCs and with population-based data from 6351 MBCs in the Surveillance, Epidemiology, and End Results (SEER) database.
RESULTS: Among BRCA2 MBCs, grade significantly decreased with increasing age at diagnosis (P = 0.005). Compared with BRCA2 FBCs, BRCA2 MBCs were of significantly higher stage (P for trend = 2 × 10(-5)) and higher grade (P for trend = 0.005) and were more likely to be oestrogen receptor-positive [odds ratio (OR) 10.59; 95 % confidence interval (CI) 5.15-21.80] and progesterone receptor-positive (OR 5.04; 95 % CI 3.17-8.04). With the exception of grade, similar patterns of associations emerged when we compared BRCA1 MBCs and FBCs. BRCA2 MBCs also presented with higher grade than MBCs from the SEER database (P for trend = 4 × 10(-12)).
CONCLUSIONS: On the basis of the largest series analysed to date, our results show that BRCA1/2 MBCs display distinct pathologic characteristics compared with BRCA1/2 FBCs, and we identified a specific BRCA2-associated MBC phenotype characterised by a variable suggesting greater biological aggressiveness (i.e., high histologic grade). These findings could lead to the development of gender-specific risk prediction models and guide clinical strategies appropriate for MBC management.
METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2.
RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 × 10-6). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance.
CONCLUSION: We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.
METHODS: We used Mendelian randomization approaches to evaluate the association of height and BMI on breast cancer risk, using data from the Consortium of Investigators of Modifiers of BRCA1/2 with 14 676 BRCA1 and 7912 BRCA2 mutation carriers, including 11 451 cases of breast cancer. We created a height genetic score using 586 height-associated variants and a BMI genetic score using 93 BMI-associated variants. We examined both observed and genetically determined height and BMI with breast cancer risk using weighted Cox models. All statistical tests were two-sided.
RESULTS: Observed height was positively associated with breast cancer risk (HR = 1.09 per 10 cm increase, 95% confidence interval [CI] = 1.0 to 1.17; P = 1.17). Height genetic score was positively associated with breast cancer, although this was not statistically significant (per 10 cm increase in genetically predicted height, HR = 1.04, 95% CI = 0.93 to 1.17; P = .47). Observed BMI was inversely associated with breast cancer risk (per 5 kg/m2 increase, HR = 0.94, 95% CI = 0.90 to 0.98; P = .007). BMI genetic score was also inversely associated with breast cancer risk (per 5 kg/m2 increase in genetically predicted BMI, HR = 0.87, 95% CI = 0.76 to 0.98; P = .02). BMI was primarily associated with premenopausal breast cancer.
CONCLUSION: Height is associated with overall breast cancer and BMI is associated with premenopausal breast cancer in BRCA1/2 mutation carriers. Incorporating height and BMI, particularly genetic score, into risk assessment may improve cancer management.
METHODS: Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort.
RESULTS: The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10-72). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10-50). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10-22) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10-12) carriers. The associations in the prospective cohort were similar.
CONCLUSION: Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.
OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2.
DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk.
EXPOSURES: Mutations of BRCA1 or BRCA2.
MAIN OUTCOMES AND MEASURES: Breast and ovarian cancer risks.
RESULTS: Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers.
CONCLUSIONS AND RELEVANCE: Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.