Displaying all 5 publications

Abstract:
Sort:
  1. Rifai D, Abdalla AN, Ali K, Razali R
    Sensors (Basel), 2016;16(3):298.
    PMID: 26927123 DOI: 10.3390/s16030298
    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.
  2. Pazikadin AR, Rifai D, Ali K, Mamat NH, Khamsah N
    Sensors (Basel), 2020 Nov 25;20(23).
    PMID: 33255797 DOI: 10.3390/s20236744
    Photovoltaic (PV) systems need measurements of incident solar irradiance and PV surface temperature for performance analysis and monitoring purposes. Ground-based network sensor measurement is preferred in many near real-time operations such as forecasting and photovoltaic (PV) performance evaluation on the ground. Hence, this study proposed a Fuzzy compensation scheme for temperature and solar irradiance wireless sensor network (WSN) measurement on stand-alone solar photovoltaic (PV) system to improve the sensor measurement. The WSN installation through an Internet of Things (IoT) platform for solar irradiance and PV surface temperature measurement was fabricated. The simulation for the solar irradiance Fuzzy Logic compensation (SIFLC) scheme and Temperature Fuzzy Logic compensation (TFLC) scheme was conducted using Matlab/Simulink. The simulation result identified that the scheme was used to compensate for the error temperature and solar irradiance sensor measurements over a variation temperature and solar irradiance range from 20 to 60 °C and from zero up to 2000 W/m2. The experimental results show that the Fuzzy Logic compensation scheme can reduce the sensor measurement error up to 17% and 20% for solar irradiance and PV temperature measurement.
  3. Rifai D, Abdalla AN, Razali R, Ali K, Faraj MA
    Sensors (Basel), 2017 Mar 13;17(3).
    PMID: 28335399 DOI: 10.3390/s17030579
    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.
  4. Abdalla AN, Ali K, Paw JKS, Rifai D, Faraj MA
    Sensors (Basel), 2018 Jun 30;18(7).
    PMID: 29966367 DOI: 10.3390/s18072108
    Eddy current testing (ECT) is an accurate, widely used and well-understood inspection technique, particularly in the aircraft and nuclear industries. The coating thickness or lift-off will influence the measurement of defect depth on pipes or plates. It will be an uncertain decision condition whether the defects on a workpiece are cracks or scratches. This problem can lead to the occurrence of pipe leakages, besides causing the degradation of a company’s productivity and most importantly risking the safety of workers. In this paper, a novel eddy current testing error compensation technique based on Mamdani-type fuzzy coupled differential and absolute probes was proposed. The general descriptions of the proposed ECT technique include details of the system design, intelligent fuzzy logic design and Simulink block development design. The detailed description of the proposed probe selection, design and instrumentation of the error compensation of eddy current testing (ECECT) along with the absolute probe and differential probe relevant to the present research work are presented. The ECECT simulation and hardware design are proposed, using the fuzzy logic technique for the development of the new methodology. The depths of the defect coefficients of the probe’s lift-off caused by the coating thickness were measured by using a designed setup. In this result, the ECECT gives an optimum correction for the lift-off, in which the reduction of error is only within 0.1% of its all-out value. Finally, the ECECT is used to measure lift-off in a range of approximately 1 mm to 5 mm, and the performance of the proposed method in non-linear cracks is assessed.
  5. Pazikadin AR, Rifai D, Ali K, Malik MZ, Abdalla AN, Faraj MA
    Sci Total Environ, 2020 May 01;715:136848.
    PMID: 32040994 DOI: 10.1016/j.scitotenv.2020.136848
    The increased demand for solar renewable energy sources has created recent interest in the economic and technical issues related to the integration of Photovoltaic (PV) into the grid. Solar photovoltaic power generation forecasting is a crucial aspect of ensuring optimum grid control and power solar plant design. Accurate forecasting provides significant information to grid operators and power system designers in generating an optimal solar photovoltaic plant and to manage the power of demand and supply. This paper presents an extensive review on the implementation of Artificial Neural Networks (ANN) on solar power generation forecasting. The instrument used to measure the solar irradiance is analysed and discussed, specifically on studies that were published from February 1st, 2014 to February 1st, 2019. The selected papers were obtained from five major databases, namely, Direct Science, IEEE Xplore, Google Scholar, MDPI, and Scopus. The results of the review demonstrate the increased application of ANN on solar power generation forecasting. The hybrid system of ANN produces accurate results compared to individual models. The review also revealed that improvement forecasting accuracy can be achieved through proper handling and calibration of the solar irradiance instrument. This finding indicates that improvements in solar forecasting accuracy can be increased by reducing instrument errors that measure the weather parameter.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links