Displaying all 16 publications

Abstract:
Sort:
  1. Chowdhury MEH, Khandakar A, Alzoubi K, Mansoor S, M Tahir A, Reaz MBI, et al.
    Sensors (Basel), 2019 Jun 20;19(12).
    PMID: 31226869 DOI: 10.3390/s19122781
    One of the major causes of death all over the world is heart disease or cardiac dysfunction. These diseases could be identified easily with the variations in the sound produced due to the heart activity. These sophisticated auscultations need important clinical experience and concentrated listening skills. Therefore, there is an unmet need for a portable system for the early detection of cardiac illnesses. This paper proposes a prototype model of a smart digital-stethoscope system to monitor patient's heart sounds and diagnose any abnormality in a real-time manner. This system consists of two subsystems that communicate wirelessly using Bluetooth low energy technology: A portable digital stethoscope subsystem, and a computer-based decision-making subsystem. The portable subsystem captures the heart sounds of the patient, filters and digitizes, and sends the captured heart sounds to a personal computer wirelessly to visualize the heart sounds and for further processing to make a decision if the heart sounds are normal or abnormal. Twenty-seven t-domain, f-domain, and Mel frequency cepstral coefficients (MFCC) features were used to train a public database to identify the best-performing algorithm for classifying abnormal and normal heart sound (HS). The hyper parameter optimization, along with and without a feature reduction method, was tested to improve accuracy. The cost-adjusted optimized ensemble algorithm can produce 97% and 88% accuracy of classifying abnormal and normal HS, respectively.
  2. Haque F, Reaz MBI, Ali SHM, Arsad N, Chowdhury MEH
    Sci Rep, 2020 12 10;10(1):21770.
    PMID: 33303857 DOI: 10.1038/s41598-020-78787-0
    Despite the availability of various clinical trials that used different diagnostic methods to identify diabetic sensorimotor polyneuropathy (DSPN), no reliable studies that prove the associations among diagnostic parameters from two different methods are available. Statistically significant diagnostic parameters from various methods can help determine if two different methods can be incorporated together for diagnosing DSPN. In this study, a systematic review, meta-analysis, and trial sequential analysis (TSA) were performed to determine the associations among the different parameters from the most commonly used electrophysiological screening methods in clinical research for DSPN, namely, nerve conduction study (NCS), corneal confocal microscopy (CCM), and electromyography (EMG), for different experimental groups. Electronic databases (e.g., Web of Science, PubMed, and Google Scholar) were searched systematically for articles reporting different screening tools for diabetic peripheral neuropathy. A total of 22 studies involving 2394 participants (801 patients with DSPN, 702 controls, and 891 non-DSPN patients) were reviewed systematically. Meta-analysis was performed to determine statistical significance of difference among four NCS parameters, i.e., peroneal motor nerve conduction velocity, peroneal motor nerve amplitude, sural sensory nerve conduction velocity, and sural sensory nerve amplitude (all p 
  3. Islam MJ, Ahmad S, Haque F, Reaz MBI, Bhuiyan MAS, Islam MR
    Diagnostics (Basel), 2021 May 07;11(5).
    PMID: 34067203 DOI: 10.3390/diagnostics11050843
    A force-invariant feature extraction method derives identical information for all force levels. However, the physiology of muscles makes it hard to extract this unique information. In this context, we propose an improved force-invariant feature extraction method based on nonlinear transformation of the power spectral moments, changes in amplitude, and the signal amplitude along with spatial correlation coefficients between channels. Nonlinear transformation balances the forces and increases the margin among the gestures. Additionally, the correlation coefficient between channels evaluates the amount of spatial correlation; however, it does not evaluate the strength of the electromyogram signal. To evaluate the robustness of the proposed method, we use the electromyogram dataset containing nine transradial amputees. In this study, the performance is evaluated using three classifiers with six existing feature extraction methods. The proposed feature extraction method yields a higher pattern recognition performance, and significant improvements in accuracy, sensitivity, specificity, precision, and F1 score are found. In addition, the proposed method requires comparatively less computational time and memory, which makes it more robust than other well-known feature extraction methods.
  4. Ng CL, Reaz MBI, Crespo ML, Cicuttin A, Chowdhury MEH
    Sci Rep, 2020 09 10;10(1):14891.
    PMID: 32913303 DOI: 10.1038/s41598-020-71709-0
    A capacitive electromyography (cEMG) biomedical sensor measures the EMG signal from human body through capacitive coupling methodology. It has the flexibility to be insulated by different types of materials. Each type of insulator will yield a unique skin-electrode capacitance which determine the performance of a cEMG biomedical sensor. Most of the insulator being explored are solid and non-breathable which cause perspiration in a long-term EMG measurement process. This research aims to explore the porous medical bandages such as micropore, gauze, and crepe bandage to be used as an insulator of a cEMG biomedical sensor. These materials are breathable and hypoallergenic. Their unique properties and characteristics have been reviewed respectively. A 50 Hz digital notch filter was developed and implemented in the EMG measurement system design to further enhance the performance of these porous medical bandage insulated cEMG biomedical sensors. A series of experimental verifications such as noise floor characterization, EMG signals measurement, and performance correlation were done on all these sensors. The micropore insulated cEMG biomedical sensor yielded the lowest noise floor amplitude of 2.44 mV and achieved the highest correlation coefficient result in comparison with the EMG signals captured by the conventional wet contact electrode.
  5. Rahman LF, Marufuzzaman M, Alam L, Sidek LM, Reaz MBI
    PLoS One, 2020;15(2):e0225408.
    PMID: 32023244 DOI: 10.1371/journal.pone.0225408
    A high-voltage generator (HVG) is an essential part of a radio frequency identification electrically erasable programmable read-only memory (RFID-EEPROM). An HVG circuit is used to generate a regulated output voltage that is higher than the power supply voltage. However, the performance of the HVG is affected owing to the high-power dissipation, high-ripple voltage and low-pumping efficiency. Therefore, a regulator circuit consists of a voltage divider, comparator and a voltage reference, which are respectively required to reduce the ripple voltage, increase pumping efficiency and decrease the power dissipation of the HVG. Conversely, a clock driving circuit consists of the current-starved ring oscillator (CSRO), and the non- overlapping clock generator is required to drive the clock signals of the HVG circuit. In this study, the Mentor Graphics EldoSpice software package is used to design and simulate the HVG circuitry. The results showed that the designed CSRO dissipated only 4.9 μW at 10.2 MHz and that the phase noise was only -119.38 dBc/Hz at 1 MHz. Moreover, the proposed charge pump circuit was able to generate a maximum VPP of 13.53 V and it dissipated a power of only 31.01 μW for an input voltage VDD of 1.8 V. After integrating all the HVG modules, the results showed that the regulated HVG circuit was also able to generate a higher VPP of 14.59 V, while the total power dissipated was only 0.12 mW with a chip area of 0.044 mm2. Moreover, the HVG circuit produced a pumping efficiency of 90% and reduced the ripple voltage to <4 mV. Therefore, the integration of all the proposed modules in HVG ensured low-ripple programming voltages, higher pumping efficiency, and EEPROMs with lower power dissipation, and can be extensively used in low-power applications, such as in non-volatile memory, radiofrequency identification transponders, on-chip direct current DC-DC converters.
  6. Islam KR, Prithula J, Kumar J, Tan TL, Reaz MBI, Sumon MSI, et al.
    J Clin Med, 2023 Aug 30;12(17).
    PMID: 37685724 DOI: 10.3390/jcm12175658
    BACKGROUND: Sepsis, a life-threatening infection-induced inflammatory condition, has significant global health impacts. Timely detection is crucial for improving patient outcomes as sepsis can rapidly progress to severe forms. The application of machine learning (ML) and deep learning (DL) to predict sepsis using electronic health records (EHRs) has gained considerable attention for timely intervention.

    METHODS: PubMed, IEEE Xplore, Google Scholar, and Scopus were searched for relevant studies. All studies that used ML/DL to detect or early-predict the onset of sepsis in the adult population using EHRs were considered. Data were extracted and analyzed from all studies that met the criteria and were also evaluated for their quality.

    RESULTS: This systematic review examined 1942 articles, selecting 42 studies while adhering to strict criteria. The chosen studies were predominantly retrospective (n = 38) and spanned diverse geographic settings, with a focus on the United States. Different datasets, sepsis definitions, and prevalence rates were employed, necessitating data augmentation. Heterogeneous parameter utilization, diverse model distribution, and varying quality assessments were observed. Longitudinal data enabled early sepsis prediction, and quality criteria fulfillment varied, with inconsistent funding-article quality correlation.

    CONCLUSIONS: This systematic review underscores the significance of ML/DL methods for sepsis detection and early prediction through EHR data.

  7. Chowdhury MEH, Khandakar A, Ahmed S, Al-Khuzaei F, Hamdalla J, Haque F, et al.
    Sensors (Basel), 2020 Oct 02;20(19).
    PMID: 33023097 DOI: 10.3390/s20195637
    Growing plants in the gulf region can be challenging as it is mostly desert, and the climate is dry. A few species of plants have the capability to grow in such a climate. However, those plants are not suitable as a food source. The aim of this work is to design and construct an indoor automatic vertical hydroponic system that does not depend on the outside climate. The designed system is capable to grow common type of crops that can be used as a food source inside homes without the need of large space. The design of the system was made after studying different types of vertical hydroponic systems in terms of price, power consumption and suitability to be built as an indoor automated system. A microcontroller was working as a brain of the system, which communicates with different types of sensors to control all the system parameters and to minimize the human intervention. An open internet of things (IoT) platform was used to store and display the system parameters and graphical interface for remote access. The designed system is capable of maintaining healthy growing parameters for the plants with minimal input from the user. The functionality of the overall system was confirmed by evaluating the response from individual system components and monitoring them in the IoT platform. The system was consuming 120.59 and 230.59 kWh respectively without and with air conditioning control during peak summer, which is equivalent to the system running cost of 13.26 and 25.36 Qatari Riyal (QAR) respectively. This system was circulating around 104 k gallons of nutrient solution monthly however, only 8-10 L water was consumed by the system. This system offers real-time notifications to alert the hydroponic system user when the conditions are not favorable. So, the user can monitor several parameters without using laboratory instruments, which will allow to control the entire system remotely. Moreover, the system also provides a wide range of information, which could be essential for plant researchers and provides a greater understanding of how the key parameters of hydroponic system correlate with plant growth. The proposed platform can be used both for quantitatively optimizing the setup of the indoor farming and for automating some of the most labor-intensive maintenance activities. Moreover, such a monitoring system can also potentially be used for high-level decision making, once enough data will be collected. This work presents significant opportunities for the people who live in the gulf region to produce food as per their requirements.
  8. Chowdhury MH, Shuzan MNI, Chowdhury MEH, Mahbub ZB, Uddin MM, Khandakar A, et al.
    Sensors (Basel), 2020 Jun 01;20(11).
    PMID: 32492902 DOI: 10.3390/s20113127
    Hypertension is a potentially unsafe health ailment, which can be indicated directly from the blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous, and noninvasive BP measurement system is proposed using the photoplethysmograph (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo preprocessing and feature extraction steps. Time, frequency, and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for systolic BP (SBP) and diastolic BP (DBP) estimation individually. Gaussian process regression (GPR) along with the ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root mean square error (RMSE) of 6.74 and 3.59, respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes.
  9. Jérôme FK, Evariste WT, Bernard EZ, Crespo ML, Cicuttin A, Reaz MBI, et al.
    Sensors (Basel), 2021 Mar 04;21(5).
    PMID: 33806350 DOI: 10.3390/s21051760
    The front-end electronics (FEE) of the Compact Muon Solenoid (CMS) is needed very low power consumption and higher readout bandwidth to match the low power requirement of its Short Strip application-specific integrated circuits (ASIC) (SSA) and to handle a large number of pileup events in the High-Luminosity Large Hadron Collider (LHC). A low-noise, wide bandwidth, and ultra-low power FEE for the pixel-strip sensor of the CMS has been designed and simulated in a 0.35 µm Complementary Metal Oxide Semiconductor (CMOS) process. The design comprises a Charge Sensitive Amplifier (CSA) and a fast Capacitor-Resistor-Resistor-Capacitor (CR-RC) pulse shaper (PS). A compact structure of the CSA circuit has been analyzed and designed for high throughput purposes. Analytical calculations were performed to achieve at least 998 MHz gain bandwidth, and then overcome pileup issue in the High-Luminosity LHC. The spice simulations prove that the circuit can achieve 88 dB dc-gain while exhibiting up to 1 GHz gain-bandwidth product (GBP). The stability of the design was guaranteed with an 82-degree phase margin while 214 ns optimal shaping time was extracted for low-power purposes. The robustness of the design against radiations was performed and the amplitude resolution of the proposed front-end was controlled at 1.87% FWHM (full width half maximum). The circuit has been designed to handle up to 280 fC input charge pulses with 2 pF maximum sensor capacitance. In good agreement with the analytical calculations, simulations outcomes were validated by post-layout simulations results, which provided a baseline gain of 546.56 mV/MeV and 920.66 mV/MeV, respectively, for the CSA and the shaping module while the ENC (Equivalent Noise Charge) of the device was controlled at 37.6 e- at 0 pF with a noise slope of 16.32 e-/pF. Moreover, the proposed circuit dissipates very low power which is only 8.72 µW from a 3.3 V supply and the compact layout occupied just 0.0205 mm2 die area.
  10. Tahir AM, Chowdhury MEH, Khandakar A, Al-Hamouz S, Abdalla M, Awadallah S, et al.
    Sensors (Basel), 2020 Feb 11;20(4).
    PMID: 32053914 DOI: 10.3390/s20040957
    Gait analysis is a systematic study of human locomotion, which can be utilized in variousapplications, such as rehabilitation, clinical diagnostics and sports activities. The various limitationssuch as cost, non-portability, long setup time, post-processing time etc., of the current gait analysistechniques have made them unfeasible for individual use. This led to an increase in research interestin developing smart insoles where wearable sensors can be employed to detect vertical groundreaction forces (vGRF) and other gait variables. Smart insoles are flexible, portable and comfortablefor gait analysis, and can monitor plantar pressure frequently through embedded sensors thatconvert the applied pressure to an electrical signal that can be displayed and analyzed further.Several research teams are still working to improve the insoles' features such as size, sensitivity ofinsoles sensors, durability, and the intelligence of insoles to monitor and control subjects' gait bydetecting various complications providing recommendation to enhance walking performance. Eventhough systematic sensor calibration approaches have been followed by different teams to calibrateinsoles' sensor, expensive calibration devices were used for calibration such as universal testingmachines or infrared motion capture cameras equipped in motion analysis labs. This paper providesa systematic design and characterization procedure for three different pressure sensors: forcesensitiveresistors (FSRs), ceramic piezoelectric sensors, and flexible piezoelectric sensors that canbe used for detecting vGRF using a smart insole. A simple calibration method based on a load cellis presented as an alternative to the expensive calibration techniques. In addition, to evaluate theperformance of the different sensors as a component for the smart insole, the acquired vGRF fromdifferent insoles were used to compare them. The results showed that the FSR is the most effectivesensor among the three sensors for smart insole applications, whereas the piezoelectric sensors canbe utilized in detecting the start and end of the gait cycle. This study will be useful for any researchgroup in replicating the design of a customized smart insole for gait analysis.
  11. Thangarajoo RG, Reaz MBI, Srivastava G, Haque F, Ali SHM, Bakar AAA, et al.
    Sensors (Basel), 2021 Dec 20;21(24).
    PMID: 34960577 DOI: 10.3390/s21248485
    Epileptic seizures are temporary episodes of convulsions, where approximately 70 percent of the diagnosed population can successfully manage their condition with proper medication and lead a normal life. Over 50 million people worldwide are affected by some form of epileptic seizures, and their accurate detection can help millions in the proper management of this condition. Increasing research in machine learning has made a great impact on biomedical signal processing and especially in electroencephalogram (EEG) data analysis. The availability of various feature extraction techniques and classification methods makes it difficult to choose the most suitable combination for resource-efficient and correct detection. This paper intends to review the relevant studies of wavelet and empirical mode decomposition-based feature extraction techniques used for seizure detection in epileptic EEG data. The articles were chosen for review based on their Journal Citation Report, feature selection methods, and classifiers used. The high-dimensional EEG data falls under the category of '3N' biosignals-nonstationary, nonlinear, and noisy; hence, two popular classifiers, namely random forest and support vector machine, were taken for review, as they are capable of handling high-dimensional data and have a low risk of over-fitting. The main metrics used are sensitivity, specificity, and accuracy; hence, some papers reviewed were excluded due to insufficient metrics. To evaluate the overall performances of the reviewed papers, a simple mean value of all metrics was used. This review indicates that the system that used a Stockwell transform wavelet variant as a feature extractor and SVM classifiers led to a potentially better result.
  12. Haque F, Reaz MBI, Chowdhury MEH, Ezeddin M, Kiranyaz S, Alhatou M, et al.
    Sensors (Basel), 2022 May 05;22(9).
    PMID: 35591196 DOI: 10.3390/s22093507
    Diabetic neuropathy (DN) is one of the prevalent forms of neuropathy that involves alterations in biomechanical changes in the human gait. Diabetic foot ulceration (DFU) is one of the pervasive types of complications that arise due to DN. In the literature, for the last 50 years, researchers have been trying to observe the biomechanical changes due to DN and DFU by studying muscle electromyography (EMG) and ground reaction forces (GRF). However, the literature is contradictory. In such a scenario, we propose using Machine learning techniques to identify DN and DFU patients by using EMG and GRF data. We collected a dataset from the literature which involves three patient groups: Control (n = 6), DN (n = 6), and previous history of DFU (n = 9) and collected three lower limb muscles EMG (tibialis anterior (TA), vastus lateralis (VL), gastrocnemius lateralis (GL)), and three GRF components (GRFx, GRFy, and GRFz). Raw EMG and GRF signals were preprocessed, and different feature extraction techniques were applied to extract the best features from the signals. The extracted feature list was ranked using four different feature ranking techniques, and highly correlated features were removed. In this study, we considered different combinations of muscles and GRF components to find the best performing feature list for the identification of DN and DFU. We trained eight different conventional ML models: Discriminant analysis classifier (DAC), Ensemble classification model (ECM), Kernel classification model (KCM), k-nearest neighbor model (KNN), Linear classification model (LCM), Naive Bayes classifier (NBC), Support vector machine classifier (SVM), and Binary decision classification tree (BDC), to find the best-performing algorithm and optimized that model. We trained the optimized the ML algorithm for different combinations of muscles and GRF component features, and the performance matrix was evaluated. Our study found the KNN algorithm performed well in identifying DN and DFU, and we optimized it before training. We found the best accuracy of 96.18% for EMG analysis using the top 22 features from the chi-square feature ranking technique for features from GL and VL muscles combined. In the GRF analysis, the model showed 98.68% accuracy using the top 7 features from the Feature selection using neighborhood component analysis for the feature combinations from the GRFx-GRFz signal. In conclusion, our study has shown a potential solution for ML application in DN and DFU patient identification using EMG and GRF parameters. With careful signal preprocessing with strategic feature extraction from the biomechanical parameters, optimization of the ML model can provide a potential solution in the diagnosis and stratification of DN and DFU patients from the EMG and GRF signals.
  13. Rahman MS, Islam KR, Prithula J, Kumar J, Mahmud M, Alam MF, et al.
    BMC Med Inform Decis Mak, 2024 Sep 09;24(1):249.
    PMID: 39251962 DOI: 10.1186/s12911-024-02655-4
    BACKGROUND: Sepsis poses a critical threat to hospitalized patients, particularly those in the Intensive Care Unit (ICU). Rapid identification of Sepsis is crucial for improving survival rates. Machine learning techniques offer advantages over traditional methods for predicting outcomes. This study aimed to develop a prognostic model using a Stacking-based Meta-Classifier to predict 30-day mortality risks in Sepsis-3 patients from the MIMIC-III database.

    METHODS: A cohort of 4,240 Sepsis-3 patients was analyzed, with 783 experiencing 30-day mortality and 3,457 surviving. Fifteen biomarkers were selected using feature ranking methods, including Extreme Gradient Boosting (XGBoost), Random Forest, and Extra Tree, and the Logistic Regression (LR) model was used to assess their individual predictability with a fivefold cross-validation approach for the validation of the prediction. The dataset was balanced using the SMOTE-TOMEK LINK technique, and a stacking-based meta-classifier was used for 30-day mortality prediction. The SHapley Additive explanations analysis was performed to explain the model's prediction.

    RESULTS: Using the LR classifier, the model achieved an area under the curve or AUC score of 0.99. A nomogram provided clinical insights into the biomarkers' significance. The stacked meta-learner, LR classifier exhibited the best performance with 95.52% accuracy, 95.79% precision, 95.52% recall, 93.65% specificity, and a 95.60% F1-score.

    CONCLUSIONS: In conjunction with the nomogram, the proposed stacking classifier model effectively predicted 30-day mortality in Sepsis patients. This approach holds promise for early intervention and improved outcomes in treating Sepsis cases.

  14. Prithula J, Islam KR, Kumar J, Tan TL, Reaz MBI, Rahman T, et al.
    Comput Biol Med, 2024 Nov 22;184:109284.
    PMID: 39579661 DOI: 10.1016/j.compbiomed.2024.109284
    Sepsis, a life-threatening condition triggered by the body's response to infection, remains a significant global health challenge, annually affecting millions in the United States alone with substantial mortality and healthcare costs. Early prediction of sepsis is critical for timely intervention and improved patient outcomes. This study introduces an innovative predictive model leveraging machine learning techniques and a specific data-splitting approach on highly imbalanced electronic health records (EHRs). Using PhysioNet/CinC Challenge 2019 data from 40,336 patients, including vital signs, lab values, and demographics. Preliminary assessments using classical and stacked ML models with Synthetic Minority Oversampling Technique (SMOTE) augmentation were conducted, showing improved performance. It is found that stacking ML models enhances overall accuracy but faces limitations in precision, recall, and F1 score for positive class prediction. A novel data-splitting approach with 5-fold cross-validation and SMOTE and COPULA augmentation techniques demonstrated promise, with F1 scores ranging from 93 % to 94 % using the COPULA technique. COPULA excelled at predictions for different hours' onsets compared to the SMOTE technique. The proposed model outperformed existing studies, suggesting clinical viability for early sepsis prediction.
  15. Haque F, Reaz MBI, Chowdhury MEH, Shapiai MIB, Malik RA, Alhatou M, et al.
    Diagnostics (Basel), 2023 Jan 11;13(2).
    PMID: 36673074 DOI: 10.3390/diagnostics13020264
    Diabetic sensorimotor polyneuropathy (DSPN) is a serious long-term complication of diabetes, which may lead to foot ulceration and amputation. Among the screening tools for DSPN, the Michigan neuropathy screening instrument (MNSI) is frequently deployed, but it lacks a straightforward rating of severity. A DSPN severity grading system has been built and simulated for the MNSI, utilizing longitudinal data captured over 19 years from the Epidemiology of Diabetes Interventions and Complications (EDIC) trial. Machine learning algorithms were used to establish the MNSI factors and patient outcomes to characterise the features with the best ability to detect DSPN severity. A nomogram based on multivariable logistic regression was designed, developed and validated. The extra tree model was applied to identify the top seven ranked MNSI features that identified DSPN, namely vibration perception (R), 10-gm filament, previous diabetic neuropathy, vibration perception (L), presence of callus, deformities and fissure. The nomogram's area under the curve (AUC) was 0.9421 and 0.946 for the internal and external datasets, respectively. The probability of DSPN was predicted from the nomogram and a DSPN severity grading system for MNSI was created using the probability score. An independent dataset was used to validate the model's performance. The patients were divided into four different severity levels, i.e., absent, mild, moderate, and severe, with cut-off values of 10.50, 12.70 and 15.00 for a DSPN probability of less than 50, 75 and 100%, respectively. We provide an easy-to-use, straightforward and reproducible approach to determine prognosis in patients with DSPN.
  16. Islam KR, Kumar J, Tan TL, Reaz MBI, Rahman T, Khandakar A, et al.
    Diagnostics (Basel), 2022 Sep 03;12(9).
    PMID: 36140545 DOI: 10.3390/diagnostics12092144
    With the onset of the COVID-19 pandemic, the number of critically sick patients in intensive care units (ICUs) has increased worldwide, putting a burden on ICUs. Early prediction of ICU requirement is crucial for efficient resource management and distribution. Early-prediction scoring systems for critically ill patients using mathematical models are available, but are not generalized for COVID-19 and Non-COVID patients. This study aims to develop a generalized and reliable prognostic model for ICU admission for both COVID-19 and non-COVID-19 patients using best feature combination from the patient data at admission. A retrospective cohort study was conducted on a dataset collected from the pulmonology department of Moscow City State Hospital between 20 April 2020 and 5 June 2020. The dataset contains ten clinical features for 231 patients, of whom 100 patients were transferred to ICU and 131 were stable (non-ICU) patients. There were 156 COVID positive patients and 75 non-COVID patients. Different feature selection techniques were investigated, and a stacking machine learning model was proposed and compared with eight different classification algorithms to detect risk of need for ICU admission for both COVID-19 and non-COVID patients combined and COVID patients alone. C-reactive protein (CRP), chest computed tomography (CT), lung tissue affected (%), age, admission to hospital, and fibrinogen parameters at hospital admission were found to be important features for ICU-requirement risk prediction. The best performance was produced by the stacking approach, with weighted precision, sensitivity, F1-score, specificity, and overall accuracy of 84.45%, 84.48%, 83.64%, 84.47%, and 84.48%, respectively, for both types of patients, and 85.34%, 85.35%, 85.11%, 85.34%, and 85.35%, respectively, for COVID-19 patients only. The proposed work can help doctors to improve management through early prediction of the risk of need for ICU admission of patients during the COVID-19 pandemic, as the model can be used for both types of patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links