METHODS: PubMed, IEEE Xplore, Google Scholar, and Scopus were searched for relevant studies. All studies that used ML/DL to detect or early-predict the onset of sepsis in the adult population using EHRs were considered. Data were extracted and analyzed from all studies that met the criteria and were also evaluated for their quality.
RESULTS: This systematic review examined 1942 articles, selecting 42 studies while adhering to strict criteria. The chosen studies were predominantly retrospective (n = 38) and spanned diverse geographic settings, with a focus on the United States. Different datasets, sepsis definitions, and prevalence rates were employed, necessitating data augmentation. Heterogeneous parameter utilization, diverse model distribution, and varying quality assessments were observed. Longitudinal data enabled early sepsis prediction, and quality criteria fulfillment varied, with inconsistent funding-article quality correlation.
CONCLUSIONS: This systematic review underscores the significance of ML/DL methods for sepsis detection and early prediction through EHR data.
METHODS: A cohort of 4,240 Sepsis-3 patients was analyzed, with 783 experiencing 30-day mortality and 3,457 surviving. Fifteen biomarkers were selected using feature ranking methods, including Extreme Gradient Boosting (XGBoost), Random Forest, and Extra Tree, and the Logistic Regression (LR) model was used to assess their individual predictability with a fivefold cross-validation approach for the validation of the prediction. The dataset was balanced using the SMOTE-TOMEK LINK technique, and a stacking-based meta-classifier was used for 30-day mortality prediction. The SHapley Additive explanations analysis was performed to explain the model's prediction.
RESULTS: Using the LR classifier, the model achieved an area under the curve or AUC score of 0.99. A nomogram provided clinical insights into the biomarkers' significance. The stacked meta-learner, LR classifier exhibited the best performance with 95.52% accuracy, 95.79% precision, 95.52% recall, 93.65% specificity, and a 95.60% F1-score.
CONCLUSIONS: In conjunction with the nomogram, the proposed stacking classifier model effectively predicted 30-day mortality in Sepsis patients. This approach holds promise for early intervention and improved outcomes in treating Sepsis cases.