The current study aimed to evaluate the bioequivalence of a new generic combination of simvastatin and ezetimibe with the reference formulation. An open-label, randomized, 3-period, 3-sequence, crossover study, including 60 healthy volunteers, was implemented. Participants received the test and reference formulation, each containing 20 mg of simvastatin and 10 mg of ezetimibe as a single-dose tablet, separated by a minimum of 2-week washout periods. Blood samples were collected for 20 time points from predose to 72 hours after the dose. The total ezetimibe assay was carried out using a validated liquid chromatography-tandem mass spectrometry, while unconjugated ezetimibe, simvastatin, and simvastatin β-hydroxy acid determination was done via a validated ultra-performance liquid chromatography-tandem mass spectrometry. Each assay was preceded by a liquid-liquid extraction step. The pharmacokinetic parameters were derived using noncompartmental analysis and then compared between the reference and test formulations via a multivariate analysis of variance. No statistical difference was found in under the concentration-time curve from time 0 to the last quantifiable concentration and maximum concentration of unconjugated ezetimibe, total ezetimibe, and simvastatin between the reference and test formulations. The 90% confidence intervals of unconjugated ezetimibe, total ezetimibe, and simvastatin natural log-transformed under the concentration-time curve from time 0 to the last quantifiable concentration, and maximum concentration were in the range of 80%-125% as per the bioequivalence acceptance criteria. Therefore, the test formulation was bioequivalent to the reference formulation.
The present study aimed to assess the bioequivalence of a new apixaban generic with reference formulation. Twenty-six healthy volunteers were recruited for an open-label, balanced, randomized, 2-treatment, 2-sequence, 2-period, single oral dose study. Following overnight fasting, each volunteer received 5 mg of apixaban test and reference formulations as single doses, separated by a 1-week washout period. Twenty blood samples were collected at predose and multiple time points between 0.5 and 72 hours after dosing. A validated ultra-performance liquid chromatography-tandem mass spectrometry detection method following a protein precipitation step was implemented to determine apixaban concentrations. Noncompartmental analysis was used to derive the pharmacokinetic parameters, which were then compared between the test and reference products using a multivariate analysis of variance. The pharmacokinetic parameters of the test product were not statistically different from the reference product, and the 90% confidence intervals of apixaban natural log-transformed area under the concentration-time curve from time 0 to infinity, area under the concentration-time curve from time 0 to the last measurable concentration, and maximum concentration were within 80%-125% based on the bioequivalence acceptance range criteria. The test and reference formulations of apixaban are bioequivalent in healthy subjects under fasting conditions.