Methods: The algorithm for an IDR of 2.22 gI·s-1 was developed based on the relationship between VCE and contrast volume in 141 patients; test bolus parameters and characteristics in 75 patients; and, tube voltage in a phantom study. The algorithm was retrospectively tested in 45 patients who underwent retrospectively ECG-gated CCTA with a 100 kVp protocol. Image quality, TID and radiation dose exposure were compared with those produced using the 120 kVp and routine contrast protocols.
Results: Age, sex, body surface area (BSA) and peak contrast enhancement (PCE) were significant predictors for VCE (P<0.05). A strong linear correlation was observed between VCE and contrast volume (r=0.97, P<0.05). The 100-to-120 kVp contrast enhancement conversion factor (Ec) was calculated at 0.81. Optimal VCE (250 to 450 HU) and diagnostic image quality were obtained with significant reductions in TID (32.1%) and radiation dose (38.5%) when using 100 kVp and personalized contrast volume calculation algorithm compared with 120 kVp and routine contrast protocols (P<0.05).
Conclusions: The proposed algorithm could significantly reduce TID and radiation exposure while maintaining optimal VCE and image quality in CCTA with 100 kVp protocol.
METHODS: A systematic search was performed in PubMed, the Cochrane library, CINAHL, Web of Science, ScienceDirect and Scopus, where 20 studies were selected for analysis of scanning parameters and CM reduction methods.
RESULTS: The mean effective dose (HE) ranged from 0.31 to 2.75 mSv at 80 kVp, 0.69 to 6.29 mSv at 100 kVp and 1.53 to 10.7 mSv at 120 kVp. Radiation dose reductions of 38 to 83% at 80 kVp and 3 to 80% at 100 kVp could be achieved with preserved image quality. Similar vessel contrast enhancement to 120 kVp could be obtained by applying iodine delivery rate (IDR) of 1.35 to 1.45 g s-1 with total iodine dose (TID) of between 10.9 and 16.2 g at 80 kVp and IDR of 1.08 to 1.70 g s-1 with TID of between 18.9 and 20.9 g at 100 kVp.
CONCLUSION: This systematic review found that radiation doses could be reduced to a rate of 38 to 83% at 80 kVp, and 3 to 80% at 100 kVp without compromising the image quality. Advances in knowledge: The suggested appropriate scanning parameters and CM reduction methods can be used to help users in achieving diagnostic image quality with reduced radiation dose.
METHODS: In this three-year longitudinal study, 125 subjects (77 PD patients and 48 spousal/sibling controls) underwent clinical, biochemical and body composition assessments using dual-energy X-ray absorptiometry.
RESULTS: Patients were older than controls (65.6 ± 8.9 vs. 62.6 ± 7.1, P = 0.049), with no significant differences in gender, comorbidities, dietary intake and physical activity. Clinically significant weight loss (≥5% from baseline weight) was recorded in 41.6% of patients, with a doubling of cases (6.5 to 13.0%) classified as underweight at study end. Over three years, patients demonstrated greater reductions in BMI (mean -1.2 kg/m2, 95%CI-2.0 to -0.4), whole-body fat percentage (-2.5% points, 95%CI-3.9 to -1.0), fat mass index (FMI) (-0.9 kg/m2, 95%CI-1.4 to -0.4), visceral fat mass (-0.1 kg, 95%CI-0.2 to 0.0), and subcutaneous fat mass (-1.9 kg, 95%CI-3.4 to -0.5) than in controls, with significant group-by-time interactions after adjusting for age and gender. Notably, 31.2% and 53.3% of patients had FMI<3rd (severe fat deficit) and <10th centiles, respectively. Muscle mass indices decreased over time in both groups, without significant group-by-time interactions. Multiple linear regression models showed that loss of body weight and fat mass in patients were associated with age, dyskinesia, psychosis and constipation.
CONCLUSIONS: We found progressive loss of weight in PD patients, with greater loss of both visceral and subcutaneous fat, but not muscle, compared to controls. Several associated factors (motor and non-motor disease features) were identified for these changes, providing insights on possible mechanisms and therapeutic targets.