Displaying all 2 publications

Abstract:
Sort:
  1. Shafiei Z, Rahim ZHA, Philip K, Thurairajah N, Yaacob H
    Arch Oral Biol, 2020 Jan;109:104554.
    PMID: 31563709 DOI: 10.1016/j.archoralbio.2019.104554
    OBJECTIVE: Psidium sp., Mangifera sp. and Mentha sp. and its mixture (PEM) are known to have antimicrobial and anti-adherence effects.

    DESIGN: Here, we have investigated these individual plant extracts and its synergistic mixture (PEM) for its anti-cariogenic effect to reduce populations of single and mixed-species of Streptococcus sanguinis and Streptococcus mutans in a planktonic or/and biofilm and their others reduced virulence. Bacterial populations in the biofilm after 24 h, hydrophobic cell surface activity to n-hexadecane and pH changes at 5 min' intervals until 90 min of incubation were recorded. Total phenolic content and bioactive compounds in the crude aqueous plant extracts were analysed. Regulatory gene expressions of S. mutans adhesins genes (gtfB, gtfC, gbpB and spaP) upon treatment with PEM were investigated in planktonic and biofilm conditions.

    RESULTS: All plant extracts strongly reduced S. mutans in the biofilm compared to S. sanguinis in single and mixed-species. PEM reduced S. mutans by 84% with S. sanguinis 87% in the mixed population. Psidium sp. and PEM highly reduced cell-surface hydrophobicity of the two bacteria thus reducing adherence and biofilm formation. PEM and Mangifera sp. lowered initial pH change in the mixed populations of S. sanguinis and S. mutans. PEM downregulated the S. mutans gtfB gene expression in the single species planktonic and mixed-species biofilms.

    CONCLUSIONS: The effectiveness of PEM in reducing S. mutans within the biofilm, cell-surface hydrophobicity, acid production and adhesin gene (gtfB) expression in mixed-species with S. sanguinis indicates its potential as an antibacterial agent against dental caries. This is attributed to the phenolic content in the PEM.

  2. Rahim MAA, Rahim ZHA, Ahmad WAW, Bakri MM, Ismail MD, Hashim OH
    Acta Pharmacol Sin, 2018 Jul;39(7):1197-1207.
    PMID: 29417940 DOI: 10.1038/aps.2017.141
    An early intervention using biomarkers to predict acute myocardial infarction (AMI) will effectively reduce global heart attack incidence, particularly among high-risk patients with type 2 diabetes mellitus (T2DM). This study attempted to identify potential biomarkers by detecting changes in the levels of plasma proteins in T2DM patients following onset of AMI in comparison with those without AMI. Volunteer T2DM patients without AMI (control; n=10) and T2DM patients with AMI (n=10) were recruited. Plasma samples from these patients were evaluated via two-dimensional gel electrophoresis (2DE) to screen for proteins with level changes between the two groups. The abundance of spots on gel images was analyzed using Progenesis SameSpots and subjected to false discovery rate (FDR) analysis. Protein spots with statistically significant changes of at least 1.5 fold were selected for mass spectrometry (MS) analysis. Due to strong cardiac connections, tetranectin and titin were evaluated by enzymelinked immunosorbent assay (ELISA). The adjusted P-values and fold changes between the two groups resulted in identification of 34 protein spots with significantly altered abundance. Upon MS analysis, 17 plasma proteins were identified: tetranectin, titin, clusterin, haptoglobin, myosin-13, zinc fnger protein 445, DNA repair protein RAD50, serum albumin, apolipoprotein A-IV, caspase-6, aminoacyl tRNA synthase complex-interacting multifunctional protein 1, serotransferrin, retinol-binding protein 4, transthyretin, alpha-1-antitrypsin, apolipoprotein A-I and serum amyloid A. Comparable patterns of changes in tetranectin and titin between the control and AMI groups were confirmed using ELISA. In summary, tetranectin and titin in plasma appeared to be closely associated with the onset of AMI among T2DM patients and can be used as potential biomarkers for prediction of a cardiac event, though this requires validation in a prospective cohort study.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links