The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue.
Water pollution due to organic compounds is of great concern and efforts are being made to develop efficient adsorbents for remediation of toxic pollutants. The development of new functionalized materials with increased performance is growing to meet the regulatory standards in response to public concerns for environment. In this study, an attempt has been made to investigate the influence of synthesis parameters like the reaction temperature, the surfactant-to-silica ratio and reaction time on the structural and textural properties of novel ordered mesoporous silica hybrids. In order to understand the effect of different synthesis parameters, all the prepared materials were systematically characterized by various analytical, spectroscopic and imaging techniques such as XRD, BET, TG etc. It was deduced from these studies that the synthesis temperature influence greatly the structural order whereas both the P104/Na2SiO3 molar ratio and reaction time found to influence textural properties significantly. However, under optimized experimental condition, we could achieve the functionalized silica hybrids that offers successful incorporation of -Amino, -Glucidoxy, -Methacrylate, -Vinyl and -Phenyl moieties indicated by FTIR peaks at 793 cm-1, 2870 cm-1, 796 cm-1, 1630 cm-1 and 954 cm-1. XRD studies reveal orthorhombic and tetragonal symmetry for the hybrids and these materials were found to be thermally stable due to incorporation of organic moiety in silica matrix. Functionalized silica hybrids then applied as adsorbents demonstrated efficient and comparable removal of 4-aminophenol and p-nitrophenol in 20 min facilitated through organic moiety. Detailed modeling of the sorption using equilibrium and kinetic isotherms has been carried out to get an insight into the transport process. The adsorption isotherms of phenol derivatives are well-fitted with the Langmuir, Freundlich and Temkin Isotherms and the adsorption kinetics follows the pseudo second order model. The modeling confirms that the uptake is a chemisorption process.