Displaying all 2 publications

Abstract:
Sort:
  1. Gupta B, Malviya R, Srivastava S, Ahmad I, Rab SO, Singh DP
    Curr Pharm Des, 2024 Aug 16.
    PMID: 39161144 DOI: 10.2174/0113816128322300240725052530
    Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.
  2. Dewani AP, Rab SO, Tripathi P, Shrivastava S, Tripathi R, Tripathi AS, et al.
    Indian J Pharmacol, 2024 May 01;56(3):178-185.
    PMID: 39078181 DOI: 10.4103/ijp.ijp_562_23
    OBJECTIVE: In the present study, the effect of sildenafil on the pharmacokinetics of metformin was studied in experimental rats, and we also postulated the molecular mechanism by performing molecular docking studies.

    MATERIALS AND METHODS: Analysis of metformin and sildenafil (SIL) from rat plasma was done by high performance liquid chromatography. Optimum chromatographic separation and quantification of MET, SIL and Cetirizine was achieved on Phenomenex EVO C18 column with triethyl amine (0.3%): Methanol: Acetonitrile (70:05:25 v/v) as mobile phase maintaining flow rate of 1 ml/min, the detector was tuned at 224 nm. The extraction of MET and sildenafil from rat plasma was achieved by solid-phase extraction using Strata-X cartridges. The method was validated as per the ICH guidelines. For docking studies, the crystal structure of organic cation transporter 1 (OCT1) protein and multidrug and toxin extrusion (MATE) protein (5XJJ) were downloaded from the PubChem database. The docking study was performed by PyRx virtual screening software, and the results were analyzed by BIOVIA Discovery Studio.

    RESULTS: The validation of HPLC method was done, intraday and interday precision study of HPLC method demonstrated %RSD values less than 5%, the extraction recovery for MET and SIL were near to 80 % for low, medium and high QC samples. The plasma stability of MET and SIL showed % RSD values <10% for low, medium, and high QC samples. A sensitivity study for MET and SIL in rat plasma suggested a lower limit of quantification values of 8 and 10 ng/mL, respectively. The pharmacokinetic parameters were recorded, Cmax of experimental and control rats was 611.2 and 913.2 ng/mL; t1/2 1.66 and 1.98, AUC (0-t) 1637.5 and 2727.24, AUC (0-∞) 1832.38 and 2995.24 for MET. The results suggested that the Cmax of MET in experimental rats (MET + SIL) was 33.07% lower than the control (MET only) and also the t1/2 was 0.32 h shorter. Docking analysis suggested a higher binding affinity of sildenafil with MATE protein (5XJJ) compared to OCT1, suggesting possible involvement of MATE family proteins for pharmacokinetic alterations of MET.

    CONCLUSIONS: The HPLC and solid-phase extraction method were developed and applied successfully for the pharmacokinetics of MET and SIL. Intake of SIL altered the pharmacokinetics of MET in rats. Molecular docking studies suggested the involvement of MATE family proteins for alterations of MET pharmacokinetics.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links