Displaying all 9 publications

Abstract:
Sort:
  1. Ahmed MA, Quan FS
    Malar J, 2019 Apr 29;18(1):150.
    PMID: 31035999 DOI: 10.1186/s12936-019-2782-2
    BACKGROUND: The high proportion of human cases due to the simian malaria parasite Plasmodium knowlesi in Malaysia is a cause of concern, as they can be severe and even fatal. Merozoite surface protein 7 (MSP7) is a multigene family which forms a non-covalent complex with MSP-1 prior to receptor-ligand recognition in Plasmodium falciparum and thus an important antigen for vaccine development. However, no study has been done in any of the ortholog family members in P. knowlesi from clinical samples. This study investigates the level of polymorphism, haplotypes, and natural selection acting at the pkmsp-7D gene in clinical samples from Malaysia.

    METHODS: Thirty-six full-length pkmsp7D gene sequences (along with the reference H-strain: PKNH_1266000) obtained from clinical isolates of Malaysia, which were orthologous to pvmsp7H (PVX_082680) were downloaded from public databases. Population genetic, evolutionary and phylogenetic analyses were performed to determine the level of genetic diversity, polymorphism, recombination and natural selection.

    RESULTS: Analysis of 36 full-length pkmsp7D sequences identified 147 SNPs (91 non-synonymous and 56 synonymous substitutions). Nucleotide diversity across the full-length gene was higher than its ortholog in Plasmodium vivax (msp7H). Region-wise analysis of the gene indicated that the nucleotide diversity at the central region was very high (π = 0.14) compared to the 5' and 3' regions. Most hyper-variable SNPs were detected at the central domain. Multiple test for natural selection indicated the central region was under strong positive natural selection however, the 5' and 3' regions were under negative/purifying selection. Evidence of intragenic recombination were detected at the central region of the gene. Phylogenetic analysis using full-length msp7D genes indicated there was no geographical clustering of parasite population.

    CONCLUSIONS: High genetic diversity with hyper-variable SNPs and strong evidence of positive natural selection at the central region of MSP7D indicated exposure of the region to host immune pressure. Negative selection at the 5' and the 3' regions of MSP7D might be because of functional constraints at the unexposed regions during the merozoite invasion process of P. knowlesi. No evidence of geographical clustering among the clinical isolates from Malaysia indicated uniform selection pressure in all populations. These findings highlight the further evaluation of the regions and functional characterization of the protein as a potential blood stage vaccine candidate for P. knowlesi.

  2. Atique Ahmed M, Kang HJ, Quan FS
    Korean J Parasitol, 2019 Aug;57(4):445-450.
    PMID: 31533414 DOI: 10.3347/kjp.2019.57.4.445
    Human infections due to the monkey malaria parasite Plasmodium knowlesi is increasingly being reported from most Southeast Asian countries specifically Malaysia. The parasite causes severe and fatal malaria thus there is a need for urgent measures for its control. In this study, the level of polymorphisms, haplotypes and natural selection of full-length pkmsp8 in 37 clinical samples from Malaysian Borneo along with 6 lab-adapted strains were investigated. Low levels of polymorphism were observed across the full-length gene, the double epidermal growth factor (EGF) domains were mostly conserved, and non-synonymous substitutions were absent. Evidence of strong negative selection pressure in the non-EGF regions were found indicating functional constrains acting at different domains. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. This is the first study to genetically characterize the full-length msp8 gene from clinical isolates of P. knowlesi from Malaysia; however, further functional characterization would be useful for future rational vaccine design.
  3. Ahmed MA, Chu KB, Quan FS
    PeerJ, 2018;6:e6141.
    PMID: 30581686 DOI: 10.7717/peerj.6141
    Introduction: The zoonotic malaria parasite Plasmodium knowlesi has currently become the most dominant form of infection in humans in Malaysia and is an emerging infectious disease in most Southeast Asian countries. The P41 is a merozoite surface protein belonging to the 6-cysteine family and is a well-characterized vaccine candidate in P. vivax and P. falciparum; however, no study has been done in the orthologous gene of P. knowlesi. This study investigates the level of polymorphism, haplotypes and natural selection of pk41 genes in clinical isolates from Malaysia.

    Method: Thirty-five full-length pk41 sequences from clinical isolates of Malaysia along with four laboratory lines (along with H-strain) were downloaded from public databases. For comparative analysis between species, orthologous P41 genes from P. falciparum, P. vivax, P. coatneyi and P. cynomolgi were also downloaded. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. Phylogenetic relationships between Pk41 genes were determined using MEGA 5.0 software.

    Results: Analysis of 39 full-length pk41 sequences along with the H-strain identified 36 SNPs (20 non-synonymous and 16 synonymous substitutions) resulting in 31 haplotypes. Nucleotide diversity across the full-length gene was low and was similar to its ortholog in P. vivax; pv41. Domain-wise amino acid analysis of the two s48/45 domains indicated low level of polymorphisms for both the domains, and the glutamic acid rich region had extensive size variations. In the central domain, upstream to the glutamate rich region, a unique two to six (K-E)n repeat region was identified within the clinical isolates. Overall, the pk41 genes were indicative of negative/purifying selection due to functional constraints. Domain-wise analysis of the s48/45 domains also indicated purifying selection. However, analysis of Tajima's D across the genes identified non-synonymous SNPs in the s48/45 domain II with high positive values indicating possible epitope binding regions. All the 6-cysteine residues within the s48/45 domains were conserved within the clinical isolates indicating functional conservation of these regions. Phylogenetic analysis of full-length pk41 genes indicated geographical clustering and identified three subpopulations of P. knowlesi; one originating in the laboratory lines and two originating from Sarawak, Malaysian Borneo.

    Conclusion: This is the first study to report on the polymorphism and natural selection of pk41 genes from clinical isolates of Malaysia. The results reveal that there is low level of polymorphism in both s48/45 domains, indicating that this antigen could be a potential vaccine target. However, genetic and molecular immunology studies involving higher number of samples from various parts of Malaysia would be necessary to validate this antigen's candidacy as a vaccine target for P. knowlesi.

  4. Ahmed MA, Lau YL, Quan FS
    Malar J, 2018 Jul 27;17(1):274.
    PMID: 30053885 DOI: 10.1186/s12936-018-2423-1
    BACKGROUND: Plasmodium knowlesi a parasite of the macaques is currently the most common cause of human malaria in Malaysia. The thrombospondin-related adhesive protein (TRAP) gene is pre-erythrocytic stage antigen. It is a well-characterized vaccine candidate in Plasmodium vivax and Plasmodium falciparum, however, no study has been done in the orthologous gene of P. knowlesi. This study investigates nucleotide diversity, haplotypes, natural selection and population differentiation of full-length pktrap genes in clinical samples from Malaysia.

    METHODS: Forty full-length pktrap sequences from clinical isolates of Malaysia along with the reference H-strain were downloaded from published databases. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. McDonald-Kreitman test was conducted using P. vivax and Plasmodium coatneyi as ortholog sequence in DnaSP 5.10 software. Population genetic differentiation index (FST) of parasite populations was determined using Arlequin v3.5. Phylogenetic relationships between trap ortholog genes were determined using MEGA 5.0 software.

    RESULTS: Comparison of 40 full-length pktrap sequences along with the H-strain identified 74 SNPs (53 non-synonymous and 21 synonymous substitutions) resulting in 29 haplotypes. Analysis of the full-length gene showed that the nucleotide diversity was lower compared to its nearest ortholog pvtrap. Domain-wise analysis indicated that the proline/asparagine rich region had higher nucleotide diversity compared to the von Willebrand factor domain and the thrombospondin-type-1 domain. McDonald-Kreitman test identified that the ratio of the number of nonsynonymous to synonymous polymorphic sites within P. knowlesi was significantly higher than that of the number of nonsynonymous to synonymous fixed sites between P. knowlesi and P. vivax. The von Willebrand factor domain also indicated balancing selection using MK test, however, it did not give significant results when tested with P. coatneyi as an outgroup. Phylogenetic analysis of full-length genes identified three distinct sub-clusters of P. knowlesi, one originating from Peninsular Malaysia and two originating from Malaysian Borneo. High population differentiation values was observed within samples from Peninsular Malaysia and Malaysian Borneo.

    CONCLUSIONS: This study is the first to report on the genetic diversity and natural selection of full-length pktrap. Low level of genetic diversity was found across the full-length gene of pktrap. Balancing selection of the von Willebrand factor domain indicated that TRAP could be a target in inducing immune response against P. knowlesi infections. However, higher number of samples would be necessary to further confirm the findings.

  5. Ahmed MA, Saif A, Quan FS
    PLoS One, 2019;14(11):e0224743.
    PMID: 31751362 DOI: 10.1371/journal.pone.0224743
    Human infections due to the monkey malaria parasite Plasmodium knowlesi are increasingly being reported from Malaysia. The parasite causes high parasitaemia, severe and fatal malaria in humans thus there is a need for urgent measures for its control. The MSP4 is a potential vaccine candidate, which is well studied in Plasmodium falciparum and Plasmodium vivax; however, no study has been conducted in the orthologous gene of P. knowlesi. In this study, we investigated the level of polymorphisms, haplotypes, natural selection and population structure of full-length pkmsp4 in 32 clinical samples from Malaysian Borneo along with 4 lab-adapted strains. We found low levels of polymorphism across the gene with exon I showing higher diversity than the exon II. The C- terminal epidermal growth factor (EGF) domains and GPI-anchored region within exon II were mostly conserved with only 2 non-synonymous substitutions. Although 21 amino acid haplotypes were found, the frequency of mutation at the majority of the polymorphic positions was low. We found evidence of negative selection at the exon II of the gene indicating existence of functional constraints. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. High population differentiation values were observed within parasite populations originating from Malaysian Borneo (Kapit, Sarikei and Betong) and laboratory-adapted strains obtained from Peninsular Malaysia and Philippines indicating distinct population structure. This is the first study to genetically characterize the full-length msp4 gene from clinical isolates of P. knowlesi from Malaysia and thus would be very useful for future rational vaccine studies. Further studies with higher number of samples and functional characterization of the protein will be necessary.
  6. Ahmed MA, Chu KB, Vythilingam I, Quan FS
    Malar J, 2018 Nov 29;17(1):442.
    PMID: 30497496 DOI: 10.1186/s12936-018-2583-z
    BACKGROUND: The C-terminal 42 kDa domain of Plasmodium knowlesi merozoite surface protein 1 (PkMSP1) is a potential asexual blood-stage vaccine candidate, however, only a limited number of clinical isolates have been analysed from Malaysia and no inter-country comparative diversity study has been conducted. In the present study, nucleotide diversity, haplotypes and natural selection levels of pkmsp1 in clinical samples from geographically distinct regions of Malaysia and Thailand were investigated. The overall population structure of the parasite from the region was determined.

    METHODS: Eleven full-length pkmsp1 sequences obtained from clinical isolates of Malaysia along with the H-strain were downloaded from the database for domain wise characterization of pkmsp1 gene. Additionally, 76 pkmsp-142 sequences from Thailand and Malaysia were downloaded from the database for intra and inter-population analysis. DnaSP 5.10 and MEGA 5.0 software were used to determine genetic diversity, polymorphism, haplotypes and natural selection. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (FST) of parasites were analysed using Arlequin v3.5.

    RESULTS: Sequence analysis of 11 full-length pkmsp1 sequences along with the H-strain identified 477 (8.4%) polymorphic sites, of which 107 were singleton sites. The overall diversity observed in the full-length genes were high in comparison to its ortholog pvmsp1 and the 4 variable domains showed extensive size variations. The nucleotide diversity was low towards the pkmsp1-42 compared to the conserved domains. The 19 kDa domain was less diverse and completely conserved among isolates from Malaysian Borneo. The nucleotide diversity of isolates from Peninsular Malaysia and Thailand were higher than Malaysian Borneo. Network analysis of pkmsp1-42 haplotypes showed geographical clustering of the isolates from Malaysian Borneo and grouping of isolates from Peninsular Malaysia and Thailand. Population differentiation analysis indicated high FST values between parasite populations originating from Malaysian Borneo, Peninsular Malaysia and Thailand attributing to geographical distance. Moderate genetic differentiation was observed for parasite populations from Thailand and Peninsular Malaysia. Evidence of population expansion and purifying selection were observed in all conserved domains with strongest selection within the pkmsp1-42 domain.

    CONCLUSIONS: This study is the first to report on inter country genetic diversity and population structure of P. knowlesi based on msp1. Strong evidence of negative selection was observed in the 42 kDa domain, indicating functional constrains. Geographical clustering of P. knowlesi and moderate to high genetic differentiation values between populations identified in this study highlights the importance of further evaluation using larger number of clinical samples from Southeast Asian countries.

  7. Ahmed MA, Deshmukh GY, Zaidi RH, Saif A, Alshahrani MA, Wazid SW, et al.
    PMID: 35096656 DOI: 10.3389/fcimb.2021.810398
    Malaria is a major public health concern, and any tangible intervention during the pre-elimination phase can result in a significant reduction in infection rates. Recent studies have reported that antigens producing cross-protective immunity can play an important role as vaccines and halt malaria transmission in different endemic regions. In this study, we studied the genetic diversity, natural selection, and discovered novel conserved epitopes of a high molecular weight rhoptry protein 2 (RhopH2) in clinical samples of Plasmodium knowlesi and Plasmodium vivax cross-protective domains, which has been proven to produce cross-protective immunity in both species. We found low levels of nucleotide diversity (P. knowlesi; π ~ 0.0093, SNPs = 49 and P. vivax π ~ 0.0014, SNPs = 23) in P. knowlesi (n = 40) and P. vivax (n = 65) samples in the PkRhopH2 cross-protective domain. Strong purifying selection was observed for both species (P. knowlesi; dS - dN = 2.41, p < 0.009, P. vivax; dS - dN = 1.58, p < 0.050). In silico epitope prediction in P. knowlesi identified 10 potential epitopes, of which 7 epitopes were 100% conserved within clinical samples. Of these epitopes, an epitope with 10 amino acids (QNSKHFKKEK) was found to be fully conserved within all P. knowlesi and P. vivax clinical samples and 80%-90% conservation within simian malaria ortholog species, i.e., P. coatneyi and P. cynomolgi. Phylogenetic analysis of the PkRhopH2 cross-protective domain showed geographical clustering, and three subpopulations of P. knowlesi were identified of which two subpopulations originated from Sarawak, Malaysian Borneo, and one comprised only the laboratory lines from Peninsular Malaysia. This study suggests that RhopH2 could be an excellent target for cross-protective vaccine development with potential for outwitting strain as well as species-specific immunity. However, more detailed studies on genetic diversity using more clinical samples from both species as well as the functional role of antibodies specific to the novel conserved epitope identified in this study can be explored for protection against infection.
  8. Wong ML, Ahmed MA, Sulaiman WYW, Manin BO, Leong CS, Quan FS, et al.
    Infect Genet Evol, 2019 09;73:26-32.
    PMID: 30999059 DOI: 10.1016/j.meegid.2019.04.010
    We explored and constructed haplotype network for simian malaria species: Plasmodium knowlesi, P. cynomolgi and P. inui aiming to understand the transmission dynamics between mosquitoes, humans and macaques. Mosquitoes were collected from villages in an area where zoonotic malaria is prevalent. PCR analysis confirmed Anopheles balabacensis as the main vector for macaque parasites, moreover nearly 60% of the mosquitoes harboured more than one Plasmodium species. Fragments of the A-type small subunit ribosomal RNA (SS rRNA) amplified from salivary gland sporozoites, and equivalent sequences obtained from GenBank were used to construct haplotype networks. The patterns were consistent with the presence of geographically distinct populations for P. inui and P. cynomolgi, and with three discrete P. knowlesi populations. This study provides a preliminary snapshot of the structure of these populations, that was insufficient to answer our aim. Thus, collection of parasites from their various hosts and over time, associated with a systematic analysis of a set of genetical loci is strongly advocated in order to obtain a clear picture of the parasite population and the flow between different hosts. This is important to devise measures that will minimise the risk of transmission to humans, because zoonotic malaria impedes malaria elimination.
  9. Ahmed MA, Baruah P, Saif A, Han JH, Al-Zharani M, Wazid SW, et al.
    Trop Med Infect Dis, 2023 Jul 26;8(8).
    PMID: 37624318 DOI: 10.3390/tropicalmed8080380
    The cell-traversal protein for ookinetes and sporozoites (CelTOS), expressed on the surface of ookinetes and sporozoitesin Plasmodium species, is a promising malaria vaccine candidate. CelTOS is essential for parasite invasion into mosquito midgut and human hepatocytes, thereby contributing to malaria transmission and disease pathogenesis. This study explores the genetic diversity, polymorphisms, haplotypes, natural selection, phylogenetic analysis, and epitope prediction in the full-length Plasmodium knowlesi CelTOS gene in clinical samples from Sarawak, Malaysian Borneo, and long-term laboratory strains from Peninsular Malaysia and the Philippines. Our analysis revealed a high level of genetic variation in the PkCelTOS gene, with a nucleotide diversity of π ~ 0.021, which was skewed towards the 3' end of the gene. This level of diversity is double that observed in PfCelTOS and 20 times that observed in PvCelTOS from worldwide clinical samples. Tests of natural selection revealed evidence for positive selection within clinical samples. Phylogenetic analysis of the amino acid sequence of PkCelTOS revealed the presence of two distinct groups, although no geographical clustering was observed. Epitope prediction analysis identified two potential epitopes (96AQLKATA102 and 124TIKPPRIKED133) using the IEDB server and one epitope (125IKPPRIKED133) by Bcepred server on the C' terminal region of PkCelTOS protein. Both the servers predicted a common epitope region of nine amino acid length (IKPPRIKED) peptide, which can be studied in the future as a potential candidate for vaccine development. These findings shed light on the genetic diversity, polymorphism, haplotypes, and natural selection within PkCelTOS in clinical samples and provide insights about its future prospects as a potential candidate for P. knowlesi malaria vaccine development.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links