Metal-organic frameworks (MOFs) have emerged as highly promising adsorbents for removing heavy metals from wastewater due to their tunable structures, high surface areas, and exceptional adsorption capacities. This review meticulously examines and summarizes recent advancements in producing and utilizing MOF-based adsorbents for sequestering heavy metal ions from water. It begins by outlining and contrasting commonly employed methods for synthesizing MOFs, such as solvothermal, microwave, electrochemical, ultrasonic, and mechanochemical. Rather than delving into the specifics of adsorption process parameters, the focus shifts to analyzing the adsorption capabilities and underlying mechanisms against critical metal(loid) ions like chromium, arsenic, lead, cadmium, and mercury under various environmental conditions. Additionally, this article discusses strategies to optimize MOF performance, scale-up production, and address environmental implications. The comprehensive review aims to enhance the understanding of MOF-based adsorption for heavy metal remediation and stimulate further research in this critical field. In brief, this review article presents a comprehensive overview of the contemporary information on MOFs as an effective adsorbent and the challenges being faced by these adsorbents for heavy metal mitigation (including stability, cost, environmental issues, and optimization), targeting to develop a vital reference for future MOF research.
Peanuts (Arachis hypogea) can be made into various products, from oil to butter to roasted snack peanuts and candies, all from the kernels. However, the skin is usually thrown away, used as cheap animal feed, or as one of the ingredients in plant fertilizer due to its little value on the market. For the past ten years, studies have been conducted to determine the full extent of the skin's bioactive substance repertoire and its powerful antioxidant potential. Alternatively, researchers reported that peanut skin could be used and be profitable in a less-intensive extraction technique. Therefore, this review explores the conventional and green extraction of peanut oil, peanut production, peanut physicochemical characteristics, antioxidant activity, and the prospects of valorization of peanut skin. The significance of the valorization of peanut skin is that it contains high antioxidant capacity, catechin, epicatechin resveratrol, and procyanidins, which are also advantageous. It could be exploited in sustainable extraction, notably in the pharmaceutical industries.